Johannes Pollex, Martin Behrens, Thomas Mittlmeier, Sven Bruhn, Matthias Weippert
{"title":"Acute effects of isolated and combined dietary nitrate and caffeine ingestion on ergometer-based 1000 m time trial performance in highly trained kayakers.","authors":"Johannes Pollex, Martin Behrens, Thomas Mittlmeier, Sven Bruhn, Matthias Weippert","doi":"10.1080/15502783.2025.2459095","DOIUrl":"10.1080/15502783.2025.2459095","url":null,"abstract":"<p><strong>Background: </strong>Dietary nitrate (BR) and caffeine (CAF) ingestion have been shown to increase sports performance. However, the isolated and combined effects of BR and CAF ingestion on time trial (TT) performance as well as the accompanying physiological and perceptual responses have never been investigated in highly trained kayak athletes. Therefore, the present study examined the impact of an isolated and combined supplementation with BR (140 ml beetroot concentrate, ~12.5 mmol nitrate) and CAF (3 mg/kg bodyweight) on 1000 m ergometer TT performance as well as the accompanying physiological (i.e. cardiorespiratory function, muscle oxygenation, muscle activity) and perceptual responses (i.e. fatigue, effort, and exercise-induced pain perception) in male highly trained kayakers. It was hypothesized that the isolated ingestion of BR and CAF would both improve ergometer-based 1000 m TT performance and induce supplement-specific physiological and perceptual responses. Considering the primary effects of BR on muscle function and of CAF on the central nervous system, it was further assumed that the combined ingestion will result in an additional performance increase and supplement-specific physiological and perceptual responses.</p><p><strong>Methods: </strong>Using a prospective, randomized, controlled, double-blind crossover design, 12 male highly trained kayak athletes from local clubs were investigated. They completed four measurement sessions resulting in four randomized conditions: (i) BR+CAF; (ii) BR+CAF placebo (BR+PLA); (iii) CAF+BR placebo (CAF+PLA); and (iv) BR placebo + CAF placebo (PLA+PLA). An air-braked instrumented kayak-ergometer was used to record 1000 m TT performance, power output, and stroke frequency. Heart rate (HR), oxygen uptake (VO<sub>2</sub>), maximum VO<sub>2</sub> (VO<sub>2max</sub>), respiratory equivalent of O<sub>2</sub> (VE/VO<sub>2</sub>), and carbon dioxide (VE/VCO<sub>2</sub>) were measured continuously. Furthermore, oxygenation of the deltoid muscle was measured with near-infrared spectroscopy (mNIRS) and muscle activity of nine unilateral muscles with surface electromyography (i.e. deltoideus, serratus anterior, triceps brachii caput lateralis, trapezius, infraspinatus, latissimus dorsi, obliquus externus, flexor carpi radialis, and vastus lateralis muscle) during the 1000 m TT. After the TT, fatigue, effort, and exercise-induced pain perception were queried. One- and two-way analysis of variance with repeated measures were conducted to determine differences between conditions for the entire 1000 m TT and predefined sections (0-50 m, 50-100 m, 100-150 m, 150-250 m, 250-500 m, 500-750 m, 750-1000 m), respectively (<i>p</i> ≤ 0.05).</p><p><strong>Results: </strong>The supplements did not have an ergogenic effect on TT performance compared to the PLA+PLA condition, either in isolation or in combination. The same applied to the majority of physiological parameters and the perceptual responses. Neverthe","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"22 1","pages":"2459095"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of different dietary supplements on athletic performance in soccer players: a systematic review and network meta-analysis.","authors":"Hua Luo, Tengku Fadilah Tengku Kamalden, Xiaolin Zhu, Changqing Xiang, Nurul Amelina Nasharuddin","doi":"10.1080/15502783.2025.2467890","DOIUrl":"10.1080/15502783.2025.2467890","url":null,"abstract":"<p><strong>Background: </strong>As dietary supplements play a crucial role in meeting the unique nutritional needs of soccer players, a growing body of studies are exploring the effects of dietary supplements on athletic performance in soccer players. The effectiveness of certain supplements, such as caffeine and creatine, remains debated due to inconsistent results across studies. Therefore, this systematic review and Bayesian network meta-analysis was conducted to tentatively identify the most effective dietary supplements for soccer players.</p><p><strong>Methods: </strong>We searched PubMed, Web of Science, Cochrane, Embase, and SPORTDiscus from database establishment to 5 February 2024 to identify randomized controlled trials (RCTs) evaluating the effects of different dietary supplements on athletic performance in soccer players. The risk of bias was assessed using the revised Cochrane risk-of-bias tool for randomized trials. A Bayesian network meta-analysis was performed using the R software and Stata 18.0. A subgroup analysis was conducted based on the competitive level of the athletes.</p><p><strong>Results: </strong>Eighty RCTs were included, with 1,425 soccer players randomly receiving 31 different dietary supplements or placebo. The network meta-analysis showed that compared with placebo, carbohydrate + protein (SMD: 2.2, very large), carbohydrate + electrolyte (SMD: 1.3, large), bovine colostrum (SMD: moderate) and caffeine (SMD: 0.29, small) were associated with a significant effect on increasing the distance covered. <i>Kaempferia parviflora</i> (SMD: 0.46, small) was associated with a significant effect on enhancing muscular strength. Beta-alanine (SMD: 0.83, moderate), melatonin (SMD: 0.75, moderate), caffeine (SMD: 0.37, small), and creatine (SMD: 0.33, small) were associated with a significant effect on enhancing jump height. Magnesium creatine chelate (SMD: -3.0, very large), melatonin (SMD: -1.9, large), creatine + sodium bicarbonate (SMD: -1.4, large), and arginine (SMD: -1.2, moderate) were associated with a significant effect on decreasing sprint time. Creatine + sodium bicarbonate (SMD: -2.3, very large) and caffeine (SMD: -0.38, small) were associated with a significant effect on improving agility. Sodium pyruvate (SMD: 0.50, small) was associated with a significant effect on increasing peak power. Magnesium creatine chelate (SMD: 1.3, large) and sodium pyruvate (SMD: 0.56, small) were associated with a significant effect on increasing mean power. Carbohydrate + electrolyte (SMD: -0.56, small) was associated with a significant effect on improving the rating of perceived exertion.</p><p><strong>Conclusions: </strong>This study suggests that a range of dietary supplements, including caffeine, creatine, creatine + sodium bicarbonate, magnesium creatine chelate, carbohydrate + electrolyte, carbohydrate + protein, arginine, beta-alanine, bovine colostrum, <i>Kaempferia parviflora</i>, melatonin, and sodium pyruvate, can improv","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"22 1","pages":"2467890"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sex-specific impacts of caffeine on body composition: commentary on a retrospective cohort study.","authors":"Anna Vittoria Mattioli","doi":"10.1080/15502783.2025.2454633","DOIUrl":"10.1080/15502783.2025.2454633","url":null,"abstract":"<p><strong>Background: </strong>Understanding the impact of caffeine intake on body composition is a topic of growing research interest. The article \"Association Between Caffeine Intake and Fat-Free Mass Index: A Retrospective Cohort Study\" by Tian et al. explored this relationship, highlighting a positive correlation between caffeine consumption and fat-free mass index (FFMI). In this letter to the editor, we discuss the broader implications of these findings, emphasizing the need for further exploration of the underlying biological and lifestyle factors influencing caffeine's effects.</p><p><strong>Objective: </strong>To provide critical insights into the mechanisms and contextual factors that may explain the observed association between caffeine intake and FFMI, with particular focus on sex-specific differences, hormonal influences, and lifestyle interactions.</p><p><strong>Methods: </strong>This letter to editor builds on the findings of Tian et al., drawing from related literature and prior research to contextualize the potential mechanisms and broader implications of caffeine's impact on body composition. The discussion highlights key areas requiring further investigation, including the role of hormonal modulation, genetic variability, and long-term effects on muscle health.</p><p><strong>Discussion: </strong>The positive association between caffeine intake and FFMI, particularly among women and younger populations, underscores the ergogenic potential of caffeine in enhancing muscle performance and metabolic efficiency. This letter expands on the study by emphasizing the role of hormonal factors, such as estrogen's modulation of CYP1A2, the liver enzyme critical for caffeine metabolism. The discussion also highlights the complex interplay between caffeine and other lifestyle factors. Finally, this commentary calls attention to the need for more research into the differential effects of caffeine sources, such as energy drinks and supplements, which often include additional ingredients with distinct metabolic and cardiovascular effects. These alternative sources may influence body composition differently than traditional coffee-based caffeine intake, an area that remains underexplored.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"22 1","pages":"2454633"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffrey R Stout, Richard B Kreider, Darren G Candow, Scott C Forbes, Eric S Rawson, Brandi Antonio, Jose Antonio
{"title":"The birth of modern sports nutrition: tracing the path from muscle biopsies to creatine supplementation-A narrative review.","authors":"Jeffrey R Stout, Richard B Kreider, Darren G Candow, Scott C Forbes, Eric S Rawson, Brandi Antonio, Jose Antonio","doi":"10.1080/15502783.2025.2463373","DOIUrl":"10.1080/15502783.2025.2463373","url":null,"abstract":"<p><strong>Background: </strong>Modern sports nutrition has evolved through discoveries in muscle metabolism and dietary supplementation. Advances in muscle biopsy techniques revealed how diet influences muscle energetics and exercise performance. The establishment of the Metabolic Research Laboratory provided a platform for further investigation, leading to the identification of creatine monohydrate (CrM) as an effective ergogenic aid. This review outlines the historical development of sports nutrition research from the 1960s to the early 1990s, highlighting key breakthroughs in muscle glycogen metabolism, dietary interventions, and creatine supplementation.</p><p><strong>Methods: </strong>We conducted a narrative review that combined personal accounts with seminal research studies. This approach allowed us to examine the contributions of Drs. Jonas Bergström and Eric Hultman-founders of the Metabolic Research Laboratory-as well as the early work of their postdoctoral colleague, Dr. Roger Harris.</p><p><strong>Results: </strong>Muscle biopsy techniques enabled direct analysis of muscle metabolism, leading to insights into glycogen depletion and recovery. The Metabolic Research Laboratory advanced our understanding of muscle energetics and informed dietary strategies for enhancing performance. In 1992, the rediscovery of CrM supplementation demonstrated its capacity to increase intramuscular creatine levels, significantly improving exercise performance and recovery. These breakthroughs reshaped sports nutrition and expanded its relevance to clinical and aging populations.</p><p><strong>Conclusion: </strong>The progression from early muscle metabolism research to the validation of CrM supplementation underscores how foundational laboratory discoveries have shaped modern sports nutrition. The work of the Metabolic Research Laboratory and its key investigators continues to inform applications in both performance enhancement and clinical health.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"22 sup1","pages":"2463373"},"PeriodicalIF":4.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brandon M Roberts, Alyssa V Geddis, Ronald W Matheny
{"title":"The dose-response effects of flurbiprofen, indomethacin, ibuprofen, and naproxen on primary skeletal muscle cells.","authors":"Brandon M Roberts, Alyssa V Geddis, Ronald W Matheny","doi":"10.1080/15502783.2024.2302046","DOIUrl":"10.1080/15502783.2024.2302046","url":null,"abstract":"<p><strong>Background: </strong>Non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen, flurbiprofen, naproxen sodium, and indomethacin are commonly employed for their pain-relieving and inflammation-reducing qualities. NSAIDs work by blocking COX-1 and/or COX-2, enzymes which play roles in inflammation, fever, and pain. The main difference among NSAIDs lies in their affinity to these enzymes, which in turn, influences prostaglandin secretion, and skeletal muscle growth and regeneration. The current study investigated the effects of NSAIDs on human skeletal muscle cells, focusing on myoblast proliferation, differentiation, and muscle protein synthesis signaling.</p><p><strong>Methods: </strong>Using human primary muscle cells, we examined the dose-response impact of flurbiprofen (25-200 µM), indomethacin (25-200 µM), ibuprofen (25-200 µM), and naproxen sodium (25-200 µM), on myoblast viability, myotube area, fusion, and prostaglandin production.</p><p><strong>Results: </strong>We found that supraphysiological concentrations of indomethacin inhibited myoblast proliferation (-74 ± 2% with 200 µM; -53 ± 3% with 100 µM; both <i>p</i> < 0.05) compared to control cells and impaired protein synthesis signaling pathways in myotubes, but only attenuated myotube fusion at the highest concentrations (-18 ± 2% with 200 µM, <i>p</i> < 0.05) compared to control myotubes. On the other hand, ibuprofen had no such effects. Naproxen sodium only increased cell proliferation at low concentrations (+36 ± 2% with 25 µM, <i>p</i> < 0.05), and flurbiprofen exhibited divergent impacts depending on the concentration whereby low concentrations improved cell proliferation (+17 ± 1% with 25 µM, <i>p</i> < 0.05) but high concentrations inhibited cell proliferation (-32 ± 1% with 200 µM, <i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>Our findings suggest that indomethacin, at high concentrations, may detrimentally affect myoblast proliferation and differentiation via an AKT-dependent mechanism, and thus provide new understanding of NSAIDs' effects on skeletal muscle cell development.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"21 1","pages":"2302046"},"PeriodicalIF":5.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farhad Gholami, Jose Antonio, Mohadeseh Iranpour, Jason Curtis, Flavia Pereira
{"title":"Does green tea catechin enhance weight-loss effect of exercise training in overweight and obese individuals? a systematic review and meta-analysis of randomized trials.","authors":"Farhad Gholami, Jose Antonio, Mohadeseh Iranpour, Jason Curtis, Flavia Pereira","doi":"10.1080/15502783.2024.2411029","DOIUrl":"10.1080/15502783.2024.2411029","url":null,"abstract":"<p><strong>Background: </strong>Green tea (GT) is a common component of supplements known as fat burners. It has gained popularity as an ergogenic aid for weight reduction to assist with obesity management. This systematic review and meta-analysis aim to explore the effect of green tea ingestion coupled with exercise training (EX) on body composition and lipid profile in overweight and obese individuals.</p><p><strong>Methods: </strong>Two independent researchers systematically searched the electronic databases of PubMed, Web of Science, and Scopus. Studies with a randomized-controlled design to compare the effect of green tea in conjunction with exercise training (EX+GT) versus exercise training alone (EX+P) in overweight or obese participants were included.</p><p><strong>Results: </strong>Of the 1,015 retrieved studies, 24 were identified to undergo full-text review, out of which 10 randomized trials met the inclusion criteria. EX+GT versus EX+P had a small and consistent effect on weight [Standardized mean difference (SMD) = -0.30, CI: -0.53 to -0.07], BMI [SMD = -0.33 CI: -0.64 to -0.02] and fat reduction [SMD = -0.29, CI: -0.57 to -0.01] and there was no evidence of heterogeneity across the trials. When compared to EX+P, EX+GT had no greater effect on lipid profile improvement [triglyceride: SMD = -0.92, CI: -1.30 to 0.49; LDL: SMD = -1.44, CI: -0.73 to 0.82; HDL: SMD = 0.56, CI -0.71 to 0.46; and total cholesterol SMD = -0.54, CI -0.85 to 0.13].</p><p><strong>Conclusions: </strong>Current evidence suggests that green tea could have quite minimal additive benefit over exercise-induced weight loss. However, incorporation of green tea into exercise training does not seem to exert additional benefits on lipid profile and it warrants further investigations in the future.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"21 1","pages":"2411029"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antifatigue effect of okara protein hydrolysate supplementation during cycling exercise in men: a pre-post uncontrolled pilot study.","authors":"Yu-Jou Chien, Jung-Piao Tsao, Chun-Tse Tsai, I-Shiung Cheng, Chin-Lin Hsu","doi":"10.1080/15502783.2024.2416479","DOIUrl":"https://doi.org/10.1080/15502783.2024.2416479","url":null,"abstract":"<p><strong>Background: </strong>Prolonged exercise usually leads to exercise fatigue, which has a negative short-term impact on exercise performance and metabolic rate; thus, fatigue needs to be resolved. Okara is a protein-rich residue of soy processing. Enzyme hydrolysis is known to increase the content of branched-chain amino acids (BCAAs), which have been reported to confer benefits for exercise. The purpose of this study was to investigate the antifatigue effect of okara protein hydrolysate (OPH) on cycling exercise.</p><p><strong>Methods: </strong>A total of 16 male participants who habitually exercised (2 times or more per week and without participation in athletic contests) were instructed to receive 11.74 g of OPH once a day. They then completed two intense cycling exercise challenges before and after four weeks of supplementation. Exercise time and blood markers related to fatigue and energy metabolism were measured.</p><p><strong>Results: </strong>The results showed that the time to exhaustion significantly increased after the treatment. The levels of lactate during exercise and at the end of exercise were significantly lower after treatment than before. Additionally, postexercise insulin sensitivity was increased after treatment.</p><p><strong>Conclusions: </strong>This study showed that OPH supplementation can promote endurance in exercise by decreasing the accumulation of fatigue-related metabolites during exercise and can promote energy recovery by increasing insulin function. These findings suggest that OPH has an antifatigue property.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"21 1","pages":"2416479"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose Antonio, Daniel E Newmire, Jeffrey R Stout, Brandi Antonio, Maureen Gibbons, Lonnie M Lowery, Joseph Harper, Darryn Willoughby, Cassandra Evans, Dawn Anderson, Erica Goldstein, Jose Rojas, Matías Monsalves-Álvarez, Scott C Forbes, Jose Gomez Lopez, Tim Ziegenfuss, Blake D Moulding, Darren Candow, Michael Sagner, Shawn M Arent
{"title":"Common questions and misconceptions about caffeine supplementation: what does the scientific evidence really show?","authors":"Jose Antonio, Daniel E Newmire, Jeffrey R Stout, Brandi Antonio, Maureen Gibbons, Lonnie M Lowery, Joseph Harper, Darryn Willoughby, Cassandra Evans, Dawn Anderson, Erica Goldstein, Jose Rojas, Matías Monsalves-Álvarez, Scott C Forbes, Jose Gomez Lopez, Tim Ziegenfuss, Blake D Moulding, Darren Candow, Michael Sagner, Shawn M Arent","doi":"10.1080/15502783.2024.2323919","DOIUrl":"10.1080/15502783.2024.2323919","url":null,"abstract":"<p><p>Caffeine is a popular ergogenic aid that has a plethora of evidence highlighting its positive effects. A Google Scholar search using the keywords \"caffeine\" and \"exercise\" yields over 200,000 results, emphasizing the extensive research on this topic. However, despite the vast amount of available data, it is intriguing that uncertainties persist regarding the effectiveness and safety of caffeine. These include but are not limited to: 1. Does caffeine dehydrate you at rest? 2. Does caffeine dehydrate you during exercise? 3. Does caffeine promote the loss of body fat? 4. Does habitual caffeine consumption influence the performance response to acute caffeine supplementation? 5. Does caffeine affect upper vs. lower body performance/strength differently? 6. Is there a relationship between caffeine and depression? 7. Can too much caffeine kill you? 8. Are there sex differences regarding caffeine's effects? 9. Does caffeine work for everyone? 10. Does caffeine cause heart problems? 11. Does caffeine promote the loss of bone mineral? 12. Should pregnant women avoid caffeine? 13. Is caffeine addictive? 14. Does waiting 1.5-2.0 hours after waking to consume caffeine help you avoid the afternoon \"crash?\" To answer these questions, we performed an evidence-based scientific evaluation of the literature regarding caffeine supplementation.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"21 1","pages":"2323919"},"PeriodicalIF":5.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10930107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayoub Saeidi, Pezhman Motamedi, Maha Hoteit, Zahra Sadek, Wiam Ramadan, Marjan Mansouri Dara, Abdullah Almaqhawi, Shahnaz Shahrbanian, Hossein Abednatanzi, Kurt A Escobar, Zhaleh Pashaei, Maisa Hamed Al Kiyumi, Ismail Laher, Hassane Zouhal
{"title":"Impact of spinach thylakoid extract-induced 12-week high-intensity functional training on specific adipokines in obese males.","authors":"Ayoub Saeidi, Pezhman Motamedi, Maha Hoteit, Zahra Sadek, Wiam Ramadan, Marjan Mansouri Dara, Abdullah Almaqhawi, Shahnaz Shahrbanian, Hossein Abednatanzi, Kurt A Escobar, Zhaleh Pashaei, Maisa Hamed Al Kiyumi, Ismail Laher, Hassane Zouhal","doi":"10.1080/15502783.2024.2398467","DOIUrl":"10.1080/15502783.2024.2398467","url":null,"abstract":"<p><strong>Background: </strong>Obesity presents multifarious etiopathologies with its management being a global challenge. This article presents the first ever report on the impact of spinach thylakoid extract-induced high-intensity functional training (HIFT) on obesity management via regulating the levels of novel adipokine, C1q/TNF-related Protein-12 (CTRP-12), furin, and Krüppel-like factor 15 (KLF-15).</p><p><strong>Methods: </strong>Sixty-eight obese male subjects were randomly divided into four groups: control group (CG), supplement group (SG), training group (TG), and the combined training and supplement group (TSG). After initial assessments of all groups, the training group commenced a twelve-week HIFT using the CrossFit program (comprising of three training sessions per week, each lasting 30 min). Eligible candidates were randomly assigned to either receive thylakoid-rich spinach extract (5 g per day) or a matching placebo (5 g per day of corn starch, 30 min before lunch) for a total duration of 12 weeks. All required data and investigations were collected at 48 h pre- and post-training.</p><p><strong>Results: </strong>The results indicated a substantial correlation between exercise and the time of KLF-15, furin, and CTRP-12 demonstrating effect sizes of 0.3, 0.7, and 0.6, respectively. Additionally, the training and supplementation group (TSG) exhibited a substantial decrease in low-density lipoprotein (LDL), total cholesterol (TC), and triglyceride (TG) levels (<i>p</i> < 0.0001). Concurrently, there was a significant increase in high-density lipoprotein-cholesterol (HDL-C) levels (<i>p</i> = 0.0001). Furthermore, a notable difference between the groups emerged in HDL, LDL, TC, and TG levels, supported by effect sizes of 0.73, 0.86, 0.96, and 0.89, respectively (<i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>The study offered novel insights into the management of obesity using supplements induced by spinach-derived thylakoid extract during a 12-week HIFT program. The proposed combination intervention may reverse obesity-induced insulin resistance and metabolic dysfunctions by positive regulation of CTRP-12/adipolin and KLF15 and simultaneous suppression of furin levels.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"21 1","pages":"2398467"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paweł Pakosz, Mariusz Konieczny, Przemysław Domaszewski, Tomasz Dybek, Oscar García-García, Mariusz Gnoiński, Elżbieta Skorupska
{"title":"Muscle contraction time after caffeine intake is faster after 30 minutes than after 60 minutes.","authors":"Paweł Pakosz, Mariusz Konieczny, Przemysław Domaszewski, Tomasz Dybek, Oscar García-García, Mariusz Gnoiński, Elżbieta Skorupska","doi":"10.1080/15502783.2024.2306295","DOIUrl":"10.1080/15502783.2024.2306295","url":null,"abstract":"<p><strong>Background: </strong>This study aimed to determine the optimal time point, either 30 or 60 minutes, at which muscle reactivity to caffeine administration is highest. Unlike previous studies that focused on the nervous system response, we employed tensiomyography (TMG) to directly assess the effects of caffeine on muscle fibers.</p><p><strong>Methods: </strong>TMG measurements were performed on the gastrocnemius medialis muscle of 42 male athletes who regularly consumed caffeine. Participants received a dose of 6 mg/kg body weight and TMG measurements were taken prior to caffeine intake, as well as 30 and 60 minutes afterward.</p><p><strong>Results: </strong>Analysis of TMG parameters including time to contraction (Tc), time delay (Td), and maximal displacement (Dm) revealed that muscles exhibited faster contractions and greater stiffness at the 30-minute mark compared to both pre-caffeine intake and the 60-minute time point. Time exerted a significant main effect on Tc (F(2, 246) = 12.09, <i>p</i> < .001, ή2p = 0.09), Td (F(2, 246) = 3.39, <i>p</i> = .035, ή2p = 0.03), and Dm (F(2, 246) = 6.83, <i>p</i> = .001, ή2p = 0.05), while no significant effect of body side was observed.</p><p><strong>Conclusions: </strong>The findings indicate that muscle contraction time (Tc) and delay time (Td) are influenced by the time elapsed since caffeine ingestion, with the fastest responses occurring after 30 minutes. Additionally, a systemic effect of caffeine was observed, as there were no discernible differences in measurements between the two sides of the body. TMG proves to be an effective noninvasive method for assessing muscle responses following caffeine administration.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"21 1","pages":"2306295"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}