Yuan Zhuang , Yihan Li , Rui Zhai , Yuhan Huang , Xinyan Wang , Lei Tang , Ke Wang , Shancai Tang , Zhihong Lin
{"title":"Research on the impact of nitromethane on the combustion mechanism of ammonia/methanol blends","authors":"Yuan Zhuang , Yihan Li , Rui Zhai , Yuhan Huang , Xinyan Wang , Lei Tang , Ke Wang , Shancai Tang , Zhihong Lin","doi":"10.1016/j.joei.2024.101867","DOIUrl":"10.1016/j.joei.2024.101867","url":null,"abstract":"<div><div>Ammonia/methanol co-combustion is considered an effective liquid-liquid blending strategy to enhance the combustion performance of ammonia. However, both methanol and ammonia have high latent heats of vaporization, which necessitate significant heat absorption during the vaporization process. This often results in excessively low ambient temperatures before the ignition of the mixture, negatively affecting low-temperature ignition and combustion. To improve the combustion characteristics of ammonia/methanol blends, this study proposes the addition of nitromethane, forming a ternary blend of ammonia/methanol/nitromethane to enhance fuel performance. To evaluate the impact of nitromethane on the combustion mechanism of ammonia/methanol blends, this study utilizes synchronous vacuum ultraviolet photoionization mass spectrometry to analyze the oxidation reactions of the ammonia/methanol/nitromethane blends. Based on the Brequigny model, cross-reactions involving C-N bonds and reactions related to nitromethane were incorporated for model modification, resulting in the newly modified model, termed A-M. Pathway and sensitivity analyses, as well as ignition delay time simulations, were conducted to further understand the combustion process. The results indicate that the addition of nitromethane to the ammonia/methanol blend lowers the initial reaction temperature from 860 K to 740 K and increases nitrogen oxide (NO<sub>x</sub>) concentrations at 1050 K. At 800 K, nitromethane reduces the conversion of NH<sub>2</sub> to NH<sub>3</sub>, thereby enhancing ammonia consumption and altering the NO<sub>x</sub> consumption pathway. Furthermore, at 1020 K, 98.6 % of H<sub>2</sub>NO reacts with H to form NH<sub>2</sub>, which is a crucial species in ammonia regeneration. Additionally, at 1020 K, 90.8 % of nitromethane decomposes through the reaction CH<sub>3</sub>NO<sub>2</sub>(+M) = CH<sub>3</sub> + NO<sub>2</sub>(+M), contributing to increased NO<sub>x</sub> emissions. Moreover, the incorporation of nitromethane significantly reduces the ignition delay time of ammonia/methanol blends, demonstrating its potential to improve the overall combustion performance of these mixtures.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101867"},"PeriodicalIF":5.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangjie Liu , Xin Zhang , Khantaphong Charoenkal , Qiaoxia Yuan , Hongliang Cao
{"title":"Hydrothermal bio-oil yield and higher heating value of high moisture and lipid biomass: Machine learning modeling and feature response behavior analysis","authors":"Xiangjie Liu , Xin Zhang , Khantaphong Charoenkal , Qiaoxia Yuan , Hongliang Cao","doi":"10.1016/j.joei.2024.101859","DOIUrl":"10.1016/j.joei.2024.101859","url":null,"abstract":"<div><div>The yield and higher heating value (HHV) of bio-oil products are significant performance parameters for the hydrothermal conversion of high-water and high-lipid biomass. Machine learning (ML) modeling prediction is a fast and convenient means of obtaining performance parameters. An informative dataset with 243 samples was prepared, and two highly adapted ML algorithms were used: Random Forest (RF) and Extreme Gradient Boosting Tree (XGBoost). It is interesting to note that the developed ML models demonstrated great prediction ability; for example, the regression coefficient (<span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span>) of the XGBoost model for yield and HHV prediction was as high as 0.942 and 0.940, respectively. Furthermore, partial dependence plots (PDP) and SHapley Additive exPlanations (SHAP) interpretability methodologies were adopted to address the main contributions of the feature identification and response behavior analysis of the features. The results demonstrated that the biomass composition had the greatest effect on bio-oil yield, with fat contributing up to 40 %. In contrast, the elemental composition had the most significant effect on the HHV of bio-oil. Notably, hydrogen content affected the HHV of up to 4.5 units. The interaction response behavior showed that the interaction of the process parameters with feedstock properties was most common and significant. The information obtained from the response mechanism can be used to enhance the subsequent hydrothermal fuel preparation process for bio-oils.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101859"},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new low NOx emission technique for NH3/H2 blends in a flameless combustor through offset injection","authors":"Mohammad Kalamuddin Ansari , Shawnam , Anand Shankar Singh , Bhupendra Khandelwal , Sudarshan Kumar","doi":"10.1016/j.joei.2024.101864","DOIUrl":"10.1016/j.joei.2024.101864","url":null,"abstract":"<div><div>The application of ammonia (NH<sub>3</sub>) as a possible future fuel presents a plausible solution for green energy storage. It helps provide a carbon-neutral fuel alternative for industrial power generation and transportation. However, the combustion of NH<sub>3</sub> presents a formidable challenge due to its low reactivity, inadequate flame stability, sluggish flame propagation, and high NO<sub>x</sub> emissions. Consequently, its integration into combustion systems necessitates substantial system and strategy modification to enable its deployment to industrial systems. The current study presents a novel fuel/air injection technique, which emphasizes the high recirculation of hot combustion products and the extended residence time of fuel/air mixtures. A comprehensive experimental and numerical investigation is conducted using a swirl air injection and offset fuel injection to achieve the flameless combustion mode for optimized NH<sub>3</sub>/H<sub>2</sub> fuel blends. A range of mixture conditions (ϕ = 0.5–1.2) and NH<sub>3</sub>/H<sub>2</sub> compositions (50/50–70/30) are experimentally examined. The investigations helped elucidate the effect of residence time and recirculation on NO<sub>x</sub> emissions through kinetic simulations using a reactor network model. Subsequently, 3-D numerical simulations helped identify regions of high recirculation, quantified through reactant dilution ratios and uniform temperature distribution. These aspects are determined using a new parameter, the temperature uniformity index along the axial direction of the combustor. The emissions of NO<sub>x</sub>, unburnt NH<sub>3</sub>, and unburnt H<sub>2</sub> are quantified for different equivalence ratios and NH<sub>3</sub> mole fractions in the fuel mixture. The investigations reveal that NO<sub>x</sub> emissions reached their minimum (450–654 ppm) and (344-211 ppm), when the burner operated at lean (ϕ = 0.5–0.8) and rich (ϕ = 1.0–1.2) conditions, respectively, for 70/30 NH<sub>3</sub>/H<sub>2</sub> blend. The emissions of unburnt NH<sub>3</sub> and H<sub>2</sub> species remain minimal for lean conditions. Both lean and rich operational regimes demonstrated similar or superior emission characteristics in flameless combustion mode when compared to the conventional combustion mode.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101864"},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Chen, Chenxi Bai, Wenda Zhang, Yijun Zhao, Dongdong Feng, Shaozeng Sun
{"title":"Experimental and modeling studies on char combustion under pressurized O2/H2O conditions","authors":"Kun Chen, Chenxi Bai, Wenda Zhang, Yijun Zhao, Dongdong Feng, Shaozeng Sun","doi":"10.1016/j.joei.2024.101858","DOIUrl":"10.1016/j.joei.2024.101858","url":null,"abstract":"<div><div>The desorption kinetic parameters for pressurized combustion and gasification reactions were determined based on a C++ program coupled with the Langmuir-Hinshelwood (L-H) kinetic model developed and experimental data from pressurized char combustion, and the established L-H kinetic model for pressurized char-O<sub>2</sub>/H<sub>2</sub>O combustion was refined in the current paper. The activation energy for desorption in reactions involving pressurized char-O<sub>2</sub> and char-H<sub>2</sub>O was determined to be 250.8 kJ/mol, accompanied by a pre-exponential factor of 5.42 × 10<sup>10</sup> g/(m<sup>2</sup> s). Using this foundation, the current research conducted simulations to investigate the impacts of temperature, pressure, and H<sub>2</sub>O concentration on the oxidation adsorption rate (<em>R</em><sub>ads,oxi</sub>), desorption rate (<em>R</em><sub>des</sub>), gasification adsorption rate (<em>R</em><sub>ads,gas</sub>), and the competitive influences of kinetics and diffusion processes within the pressurized char-O<sub>2</sub>/H<sub>2</sub>O combustion. The simulation results indicate a gradual increase in <em>R</em><sub>des</sub> and <em>R</em><sub>ads,gas</sub> with char conversion to reach a peak, followed by a gradual decline. Conversely, the <em>R</em><sub>ads,oxi</sub> varies smoothly throughout the char conversion process. At 1673 K/1.0 MPa, the char-O<sub>2</sub>/H<sub>2</sub>O reaction rate is primarily constrained by <em>R</em><sub>ads,oxi</sub> and <em>R</em><sub>ads,gas</sub>, with the adsorption reaction serving as the rate-controlling step. Moreover, it was noted that a rise in pressure resulted in a linear increase in <em>R</em><sub>ads,oxi</sub>, <em>R</em><sub>des</sub>, and <em>R</em><sub>ads,gas</sub>. At elevated temperatures, the impact of pressure on them becomes more noticeable. However, the introduction of H<sub>2</sub>O mitigates this effect. Elevated temperature and pressure facilitate the competition on the kinetics of char-O<sub>2</sub> combustion for O<sub>2</sub> diffusion, resulting in the conversion of char being more susceptible to O<sub>2</sub> diffusion rate limitation. With the addition of 20 % H<sub>2</sub>O, the competition effect was weakened. In the case of pressurized combustion involving char and O<sub>2</sub>/H<sub>2</sub>O, the char conversion is primarily constrained by the O<sub>2</sub> diffusion rate and is scarcely influenced by the H<sub>2</sub>O diffusion rate.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101858"},"PeriodicalIF":5.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weiguo Pan , Ningning Yao , Yifeng Chen , Lianwei Kang
{"title":"Numerical investigation of NOx emission characteristics in air-staged combustion system fueled by premixed ammonia/methane","authors":"Weiguo Pan , Ningning Yao , Yifeng Chen , Lianwei Kang","doi":"10.1016/j.joei.2024.101857","DOIUrl":"10.1016/j.joei.2024.101857","url":null,"abstract":"<div><div>For the purpose of achieving global CO<sub>2</sub> reduction, decarbonization at the source of fuels is a practical approach. The transition phase of blending fossil fuels with carbon-free fuels for combustion is a hot topic in the current carbon emission reduction process. In order to achieve efficient and low-pollution combustion of NH<sub>3</sub>/CH<sub>4</sub>, the combustion and emission characteristics of NH<sub>3</sub>/CH<sub>4</sub> under single-stage and air-staged combustion methods were numerically investigated in this work. The emissions were compared for different equivalence ratios and different ammonia content conditions. Rate of production (ROP) and sensitivity analysis were performed for NO<sub>x</sub>, and the reaction path of NH<sub>3</sub>/CH<sub>4</sub> was analyzed. The results indicate that the C-N interaction of the NH<sub>3</sub>/CH<sub>4</sub> mixed combustion process is not significant and turns weaker in the lean flames. HNO intermediate is an important specie for NO generation, and HCN together with HCO intermediate, are essential species for CO generation. NH<sub>2</sub> and NH almost dominate the promotion and inhibition of NO generation. Given the contrasting NO<sub>x</sub> and CO emission behavior of NH<sub>3</sub>/CH<sub>4</sub> in rich and lean flames, the single-stage combustion approach is not suitable. Air-staged combustion achieves both, ensuring the complete burning of NH<sub>3</sub> and CH<sub>4</sub> while reducing NO<sub>x</sub> and CO emissions. Moreover, the results suggest that <em>Φ</em><sub>pri</sub> = 1.2/<em>Φ</em><sub>total</sub> = 0.6 is the optimal NH<sub>3</sub>/CH<sub>4</sub> combustion staging method for controlling NO<sub>x</sub> emissions.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101857"},"PeriodicalIF":5.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhang Lu , Mingliang Wei , Xidong Wang , Qian Ji , Chengcheng Ao , Xintao Wang , Junheng Liu
{"title":"Numerical study on influences of intake temperature and swirl ratio on in-cylinder combustion and pollutant formation characteristics of ammonia/diesel dual-fuel engine","authors":"Yuhang Lu , Mingliang Wei , Xidong Wang , Qian Ji , Chengcheng Ao , Xintao Wang , Junheng Liu","doi":"10.1016/j.joei.2024.101860","DOIUrl":"10.1016/j.joei.2024.101860","url":null,"abstract":"<div><div>In order to improve the combustion efficiency of ammonia fuel, and enhance the operational stability and emission level for ammonia engines, this study constructs an in-cylinder combustion numerical model of ammonia/diesel dual-fuel engine based on CONVERGE software, and investigates the effects of initial intake temperature and swirl intensity on in-cylinder combustion and pollutant formation characteristics of ammonia/diesel dual-fuel engine. The results show that increasing the intake temperature can improve the in-cylinder thermal atmosphere, advance the dual-fuel combustion reaction process, and increase the peak in-cylinder combustion pressure and temperature. The peak in-cylinder pressure increases from 6.05 to 6.44 MPa when the intake temperature is increased from 303 to 343 K. This is effective in improving the emissions of incomplete combustion for the ammonia/diesel dual-fuel engine. The in-cylinder unburned NH<sub>3</sub>, CO and HC emissions are reduced by 20.2 %, 77.1 % and 88.21 %, respectively. Increasing the swirl ratio enhances the in-cylinder gas disturbance, reduces the amount of fuel attached to the wall, and improves the quality of in-cylinder fuel-gas mixture. It also accelerates the process of combustible mixture formation, advances the starting point of ammonia fuel consumption, and accelerates the initial reaction rate. When the swirl ratio is increased from 0.5 to 3.0, the in-cylinder unburned NH<sub>3</sub> emission is reduced by 14.85 %. Reasonable adjustment of intake temperature and swirl ratio helps to improve the distribution of direct injection fuel particles inside the cylinder, thereby optimizing the dual-fuel combustion process and enhancing engine performance.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101860"},"PeriodicalIF":5.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Chen , Fangjia Yan , Ren Zhang , Haiqiao Wei , Jiaying Pan
{"title":"Effect of ammonia reforming on combustion and emission characteristics of a 4-valve engine with an active pre-chamber","authors":"Lin Chen , Fangjia Yan , Ren Zhang , Haiqiao Wei , Jiaying Pan","doi":"10.1016/j.joei.2024.101861","DOIUrl":"10.1016/j.joei.2024.101861","url":null,"abstract":"<div><div>Ammonia (NH<sub>3</sub>), as a hydrogen carrier and carbon-free fuel, offers an attractive opportunity for engines to achieve carbon neutrality. Turbulent jet ignition (TJI) combined with ammonia reforming shows the great capacity in ammonia-fueled engines. In this study, the effects of reforming strategy in an ammonia-fueled TJI are numerically studied, addressing the reforming ratio and reforming region. The results show that when only using reformate in the pre-chamber, the promoting effect of jet flame is more effective on the initial combustion phase. There are still very high NH<sub>3</sub> emissions due to the low reactivity in the main chamber. Further using reformate both in the pre-chamber and the main chamber, all the combustion stages (ST-CA10, CA10-50, CA50-90) can be shortened almost linearly with the increase of reforming ratio. Besides, the unburned NH<sub>3</sub> can be reduced to an acceptable level when the reforming ratio reaches 200 ‰ (hydrogen energy ratio of 18.50 %). The main reason is that the jet-induced strong flow field is coincident with the whole combustion stage. Further increasing the reforming ratio (pure hydrogen) in the pre-chamber, a high combustion efficiency and acceptable NH<sub>3</sub> emission can be achieved at a low hydrogen energy ratio (7.08 %). However, knocking combustion will happen at high reforming ratio with a low knock intensity. The results can provide some guidance for making the best-promoting benefit of the limited hydrogen in ammonia TJI engines with different reforming strategies.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101861"},"PeriodicalIF":5.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rukan Can Seyfeli , Abdülvahap Çakmak , Esma Yeliz Kaya , Selim Ceylan
{"title":"Desulfurization of pyrolytic oils from waste tire pyrolysis in a fluidized bed reactor with boron nitride adsorbents","authors":"Rukan Can Seyfeli , Abdülvahap Çakmak , Esma Yeliz Kaya , Selim Ceylan","doi":"10.1016/j.joei.2024.101862","DOIUrl":"10.1016/j.joei.2024.101862","url":null,"abstract":"<div><div>The study focused on producing hexagonal boron nitride (hBN) as an adsorbent which provides high efficiency in desulfurization processes. The synthesized hBN is used for sulfur removal from liquid fuel derived from end-of-life tires (ELTs). Characterization of hBN was performed using FTIR, XRD, TGA, and SEM-EDS analyses. Liquid fuel was produced in a fluidized bed reactor at 550 °C under a nitrogen gas flow. Post-desulfurization, the fuel's density, water content, and calorific value increased, while sulfur content and flash point decreased, with sulfur content showing a significant reduction of 79.23 %. The desulfurized fuel (PS-A) exhibited better combustion characteristics and closely resembled diesel fuel performance, though it slightly reduced engine effective efficiency by 1.06 % compared to diesel. Both PS-A and pre-desulfurized fuel (PS-B) significantly reduced soot emissions by 23.28 % and 20.81 %, respectively, compared to diesel. Additionally, CO emissions were lower for PS-A and PS-B, with reductions of 4.35 % and 2.00 %, respectively. However, CO<sub>2</sub> emissions increased by 1.60 % for PS-A and 0.86 % for PS-B, attributed to higher fuel consumption. Overall, hBN effectively reduced sulfur content and improved several fuel properties of pyrolytic liquids. The study highlights the environmental and economic benefits of enhancing ELT-derived liquid fuels and suggests potential applications in real systems, serving as a foundation for new technologies and projects.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101862"},"PeriodicalIF":5.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Xu , Wan-Yuan Shi , Lin Feng , Wan Sun , Liang-Ming Pan
{"title":"Synergistic effects of multi-walled carbon nanotubes and Mn0.4Cu0.6Fe2O4 on mercury removal with high efficiency and sulfur resistance","authors":"Bo Xu , Wan-Yuan Shi , Lin Feng , Wan Sun , Liang-Ming Pan","doi":"10.1016/j.joei.2024.101863","DOIUrl":"10.1016/j.joei.2024.101863","url":null,"abstract":"<div><div>Although ferrite-based adsorbents are the potential mercury removal materials for the high thermal stability, they usually suffer from a low efficiency in flue gas environment, especially under SO<sub>2</sub> condition. In the present paper, the multi-walled carbon nanotubes (MWCNTs) are utilized to improve the adsorption capacity of the Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> adsorbents as well as inhibit the influence of flue gas composition. The influences of temperature, adsorbent type and the flue gas composition on Hg<sup>0</sup> removal efficiency are evaluated by experiments. The physical adsorption property of MWCNTs provides a platform for Hg<sup>0</sup> oxidation by Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub>. The synergistic effect between MWCNTs and Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> enhances the mercury removal efficiency as well we the sulfur resistance. The results find that the adsorbent of Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> containing 14 % MWCNTs has a high mercury removal efficiency of 95.6 % at 120 °C even under 1000 ppm SO<sub>2</sub> concentration. The kinetic behaviors of adsorbent adsorption are analyzed by theoretical models. The mechanisms of porous carbon-containing modifier to improve the mercury removal performance of Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> are explored carefully. The present ferrite-based adsorbent exhibits promising prospects for the practical industrial applications of the low temperature mercury removal from coal-fired flue gas.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101863"},"PeriodicalIF":5.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basiru O. Yusuf , Ijaz Hussain , Mustapha Umar , Aliyu M. Alhassan , Chennampilly Ummer Aniz , Khalid R. Alhooshani , Syed A. Ali , Babar Ali , Saheed A. Ganiyu
{"title":"Effect of Cu incorporation on Fe-based catalysts for selective CO2 hydrogenation to olefins","authors":"Basiru O. Yusuf , Ijaz Hussain , Mustapha Umar , Aliyu M. Alhassan , Chennampilly Ummer Aniz , Khalid R. Alhooshani , Syed A. Ali , Babar Ali , Saheed A. Ganiyu","doi":"10.1016/j.joei.2024.101849","DOIUrl":"10.1016/j.joei.2024.101849","url":null,"abstract":"<div><div>The process of converting CO<sub>2</sub> into sustainable chemical feedstock and fuels through reaction with renewable hydrogen has been regarded as a promising direction in energy research. The enhancement of CO<sub>2</sub> hydrogenation efficiency to produce valuable hydrocarbons (specifically olefins) on Fe catalysts through Cu modification has been extensively researched. However, there is ongoing vigorous debate regarding the impact of these modifications on catalytic properties and the underlying mechanism. When compared to unprompted iron-based catalysts for CO<sub>2</sub> hydrogenation, the choice of desired products, such as C<sub>2</sub>-C<sub>4</sub> and C<sub>5+</sub>, is relatively low. So, promoters are frequently employed to customize and enhance product distribution. This study investigates how adding Cu to Fe-based supported catalysts affects their performance in converting CO<sub>2</sub> to hydrocarbons, with a specific emphasis on the interaction between Fe and Cu. To achieve this goal, catalysts were created using co-precipitation methods, varying the distribution of Fe and Cu within them. A set of composite catalysts underwent testing in a fixed bed setup using a reactant gas mixture at 350 °C and 30 bar pressure. Analysis techniques such as XRD, SEM, TEM, NH<sub>3</sub>-TPD, H<sub>2</sub>-TPR, and N<sub>2</sub> adsorption-desorption isotherms revealed the presence of iron-copper interaction within the composite catalysts. This interaction between the two components synergistically enhances the catalytic activity in CO<sub>2</sub> hydrogenation.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101849"},"PeriodicalIF":5.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}