Journal of Polymer Engineering最新文献

筛选
英文 中文
Effect of hydroxy-terminated hyperbranched polymer coated separator on the lithium-ion battery performances 羟基端超支化聚合物涂层隔膜对锂离子电池性能的影响
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-05-08 DOI: 10.1515/polyeng-2024-0026
Qingpeng He, Lei Ding, Dandan Li, Yuanjie Zhang, Sihang Zhang
{"title":"Effect of hydroxy-terminated hyperbranched polymer coated separator on the lithium-ion battery performances","authors":"Qingpeng He, Lei Ding, Dandan Li, Yuanjie Zhang, Sihang Zhang","doi":"10.1515/polyeng-2024-0026","DOIUrl":"https://doi.org/10.1515/polyeng-2024-0026","url":null,"abstract":"The hydrophobicity of polyolefin separators causes poor compatibility with the internal environment of lithium-ion batteries and thus elevates lithium-ion migration barriers. In this research, hydroxy-terminated hyperbranched polymer (HTHP) coated separators are fabricated successfully based on the simple and easy-on impregnation method. Abundant hydroxyl groups in HTHP reinforce separator electrolyte affinity, generating the much lower contact angle and higher electrolyte uptake. Accordingly, HTHP-coated separators show broader electrochemical window and superior ionic conductivity and Li<jats:sup>+</jats:sup> transport number, which facilitate the Li<jats:sup>+</jats:sup> migration within porous pathways and hence maximally weaken counteranions-induced polarizations. The lower interfacial resistances also guarantee the Li<jats:sup>+</jats:sup> accelerated diffusion via the separator–electrodes interfaces. Therefore, batteries containing modified separators exhibit optimized <jats:italic>C</jats:italic>-rate capacity and cycling stability. However, immoderate HTHP coating blocks partial pores and thus restricts Li<jats:sup>+</jats:sup> transference, which deteriorates <jats:italic>C</jats:italic>-rate capacity and cycling durability in turn. This separator modification scheme possesses advantages of simple preparation, environment-friendly, and low manufacturing cost, providing practical guidance for low-cost and high-performance separator manufacture.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"4320 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis and electrochemical investigation of graphitic carbon nitride/manganese dioxide incorporated polypyrrole nanocomposite for high-performance energy storage applications 用于高性能储能应用的氮化石墨碳/二氧化锰与聚吡咯纳米复合材料的简便合成与电化学研究
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-04-30 DOI: 10.1515/polyeng-2024-0025
Joseph Raj Xavier
{"title":"Facile synthesis and electrochemical investigation of graphitic carbon nitride/manganese dioxide incorporated polypyrrole nanocomposite for high-performance energy storage applications","authors":"Joseph Raj Xavier","doi":"10.1515/polyeng-2024-0025","DOIUrl":"https://doi.org/10.1515/polyeng-2024-0025","url":null,"abstract":"Manganese dioxide (MnO<jats:sub>2</jats:sub>) nanoparticles were modified by graphitic carbon nitride (GCN) and polylpyrrole (Ppy) to enhance their electrochemical performance. The surface influence, crystalline structure, and electrochemical performance of the Ppy/GCN/MnO<jats:sub>2</jats:sub> material were characterized and compared with those of pristine MnO<jats:sub>2</jats:sub>. It is found that surface modification can improve the structural stability of MnO<jats:sub>2</jats:sub> without decreasing its available specific capacitance. The electrochemical properties of synthesized Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode were evaluated using cyclic voltammetry (CV) and AC impedance techniques in 5 M KOH electrolyte. Specific capacitances of 486, 815, 921, and 1377 F/g were obtained for MnO<jats:sub>2</jats:sub>, Ppy/MnO<jats:sub>2</jats:sub>, GCN/MnO<jats:sub>2</jats:sub>, and Ppy/GCN/MnO<jats:sub>2</jats:sub>, respectively, at 5 A/g. This improvement is attributed to the synergistic effect of GCN and Ppy in the Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode material. The Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode in KOH has average specific energy and specific power densities of 172 Wh kg<jats:sup>−1</jats:sup> and 2065 W kg<jats:sup>−1</jats:sup>, respectively. Only 2 % of the capacitance’s initial value is lost after 10,000 cycles. The resulting Ppy/GCN/MnO<jats:sub>2</jats:sub> nanocomposite had very stable and porous layered structures. This work demonstrates that Ppy/GCN/MnO<jats:sub>2</jats:sub> nanomaterials exhibit good structural stability and electrochemical performance and are good materials for supercapacitor applications.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"52 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and properties of acrylate/polyvinyl alcohol self-healing hydrogels based on hydrogen bonds and coordination bonds 基于氢键和配位键的丙烯酸酯/聚乙烯醇自愈合水凝胶的制备及其特性
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-04-29 DOI: 10.1515/polyeng-2023-0284
Yaxin Gu, Minghui Sun, Yunxue Liu, Zhaorong Fan, Henggang Jin, Xiaoming Li
{"title":"Preparation and properties of acrylate/polyvinyl alcohol self-healing hydrogels based on hydrogen bonds and coordination bonds","authors":"Yaxin Gu, Minghui Sun, Yunxue Liu, Zhaorong Fan, Henggang Jin, Xiaoming Li","doi":"10.1515/polyeng-2023-0284","DOIUrl":"https://doi.org/10.1515/polyeng-2023-0284","url":null,"abstract":"Despite the widespread attention garnered by self-healing hydrogels in various fields, achieving a balance between high mechanical strength and self-healing capability remains a challenge. Particularly, the addition of fillers in the fabrication of spray-coated waterproof materials hinders the movement of molecular chains. Simultaneously, the self-repair of metal ions is hindered by issues such as a prolonged required time and low repair rate. Therefore, we introduce a polyvinyl alcohol (PVA) solution subjected to freeze–thaw cycles into the acrylic acid magnesium/calcium hydrogel system, creating a self-healing hydrogel with an interpenetrating polymer network (IPN). Due to the abundance of hydroxyl groups on the PVA molecular chains, during the freezing process, some PVA chains form microcrystals that do not dissolve upon thawing at room temperature. These microcrystals act as cross-linking points, connecting PVA chains into a 3D network. Consequently, the hydrogel, under the dual effects of hydrogen bonds and coordination bonds, exhibits excellent mechanical properties and the ability to self-heal at room temperature. Furthermore, by adjusting the concentration of the PVA solution, the mechanical properties and healing ability of the hydrogel can be tailored to meet various construction requirements.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"24 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the photodegradation behaviors of liquid crystal display (LCD) used optical cellulose triacetate films 使用三醋酸纤维素光学薄膜的液晶显示器 (LCD) 光降解行为研究
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-04-20 DOI: 10.1515/polyeng-2023-0184
Xiushan Fan, Jin Wu
{"title":"Study on the photodegradation behaviors of liquid crystal display (LCD) used optical cellulose triacetate films","authors":"Xiushan Fan, Jin Wu","doi":"10.1515/polyeng-2023-0184","DOIUrl":"https://doi.org/10.1515/polyeng-2023-0184","url":null,"abstract":"In this study, ramie fiber was employed to prepare cellulose triacetate (CTA) films. Subsequently, the photodegradation behaviors without photosensitizers of CTA films were carried out in photodegradation chambers at 40 °C. Additionally, the photodegradation procedure of films was assessed by the attenuated total reflection infrared (ATR-IR), <jats:sup>1</jats:sup>H nuclear magnetic resonance (<jats:sup>1</jats:sup>H NMR), scanning electron microscope (SEM), thermal properties, degree of substitution (DS), and tensile strength. The research consequences indicated that the mechanical strength of the CTA films was decreased significantly after ultraviolet (UV) irradiation for 300 h. However, the DS of the films is almost invariable when they are exposed to UV irradiation. Meanwhile, the suggested mechanism for photodegradation of CTA was also exhibited in this paper. This study provides a mild and potential pre-treatment approach for the biodegradation of LCD used waste CTA films.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"57 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Pb2+ adsorption using recyclable magnetic sodium alginate in a network structure for high renewable capacity 利用网络结构中的可回收磁性海藻酸钠增强对 Pb2+ 的吸附,实现高再生能力
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-04-01 DOI: 10.1515/polyeng-2023-0301
Liming Dong, Hua Sun, Danfeng Wang, Shifan Wang
{"title":"Enhanced Pb2+ adsorption using recyclable magnetic sodium alginate in a network structure for high renewable capacity","authors":"Liming Dong, Hua Sun, Danfeng Wang, Shifan Wang","doi":"10.1515/polyeng-2023-0301","DOIUrl":"https://doi.org/10.1515/polyeng-2023-0301","url":null,"abstract":"This study presents the synthesis of a magnetic sodium alginate hydrogel for efficient adsorption of heavy metal ions. The hydrogel, composed of sodium alginate, demonstrates a network structure that facilitates effective metal ion adsorption. Utilizing magnetic forces, the hydrogel can be easily separated and regenerated, exhibiting excellent recyclability. Compared to traditional adsorbents, the magnetic sodium alginate hydrogel shows significantly improved adsorption capacity, particularly for Pb<jats:sup>2+</jats:sup> ions. At pH ca. 4 and an adsorption time of 120 min, the hydrogel achieves a maximum adsorption capacity of 137 mg/g for Pb<jats:sup>2+</jats:sup>, with an adsorption rate of 83 %. The adsorption kinetics follow a pseudo-second-order equation, while thermodynamically, the process adheres to the Freundlich adsorption model, with capacity positively correlated with temperature and concentration. The negative Δ<jats:italic>H</jats:italic> value indicates an exothermic and spontaneous adsorption process. In competitive adsorption experiments, the hydrogel demonstrates strong selective adsorption towards Pb<jats:sup>2+</jats:sup>. It also exhibits excellent reusability, maintaining 80 % adsorption capacity after 10 cycles. The magnetic sodium alginate composite material possesses favorable recyclability and convenient magnetic separation properties, offering significant potential in various applications.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140600912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-healing superoleophobic and superhydrophilic fabrics for efficient oil/water separation 用于高效油水分离的自修复超疏水性和超亲水性织物
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-03-28 DOI: 10.1515/polyeng-2024-0027
Sida Fu, Haidong Li, Hongtao Liu, Yan Zhao, Zhiguang Xu
{"title":"Self-healing superoleophobic and superhydrophilic fabrics for efficient oil/water separation","authors":"Sida Fu, Haidong Li, Hongtao Liu, Yan Zhao, Zhiguang Xu","doi":"10.1515/polyeng-2024-0027","DOIUrl":"https://doi.org/10.1515/polyeng-2024-0027","url":null,"abstract":"In this study, superoleophobic and superhydrophilic fabrics with self-healing property have been prepared by the use of chitosan (CS), sodium tripolyphosphate (TPP), Capstone FS-60 (FS-60), and dopamine hydrochloride as coating materials. The coated fabrics show oil contact angle of 154° for soybean oil, and water droplets can be spread on the surface in 1 s. Notably, it is further demonstrated that the coating has self-healing property. After undergoing home laundering, Martindale abrasion, or acid/base etching, the fabrics lose their superoleophobic and superhydrophilic property, while they can restore the superoleophobic and superhydrophilic property by just being wetted with distilled water and then heated in an oven. Additionally, the coated fabrics prove effective in separating oil/water mixtures. These fabrics, endowed with superoleophobic and superhydrophilic property along with self-healing capability, present innovative features and applications across diverse fields.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"14 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iota carrageenan linked barium ion nanoparticle synthesis for the selective targeted imaging and inhibition of cancer cells 合成与 Iota 角叉菜胶相连的钡离子纳米粒子,用于选择性靶向成像和抑制癌细胞
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-03-28 DOI: 10.1515/polyeng-2023-0278
Aman Shukla, Sachin Kumar, Akanksha Bhatt, Priyank Purohit, Shashank Kailkhura, Magda H. Abdellattif
{"title":"Iota carrageenan linked barium ion nanoparticle synthesis for the selective targeted imaging and inhibition of cancer cells","authors":"Aman Shukla, Sachin Kumar, Akanksha Bhatt, Priyank Purohit, Shashank Kailkhura, Magda H. Abdellattif","doi":"10.1515/polyeng-2023-0278","DOIUrl":"https://doi.org/10.1515/polyeng-2023-0278","url":null,"abstract":"The development of stable carrageenan nanoparticles connected to the sulfate functional group of carrageenan and barium ion for the use of selectively targeting cancer cell and imaging contrast to help with diagnosis (tracing/imaging) is the concern of the present research. This study provides an overview of ion substitution chemistry, highlighting the role of ions and how they affect the applicability of carrageenan. The characteristic of barium sulfate, which is widely used as radiopaque to provide contrast for diagnostic radiographic examinations in the gastrointestinal mucosa, is provided by its linkage with the barium ion despite K<jats:sup>+</jats:sup>’s natural binding with carrageenan. The additional role of the Ba ion linked carrageenan was found highly selective for cancer cell through the <jats:italic>in vitro</jats:italic> cell line assay; however, the nonattachability to the normal cell makes useful to trace and treat the cancer cell. The tracing is possible because of the barium sulfate functional group and its nanosize molecule, which shows precision medicine, fluorescence, and X-ray/CT imaging character, to be utilized as the diagnostic purpose, especially to tumor cell. The apoptosis from the Ba<jats:sup>2+</jats:sup> ion by the inhibition of outflux of K<jats:sup>+</jats:sup> to disturb the osmosis of cell and selectivity of the molecules because of high pKa (Logarithms of acid dissociation constant) value, which makes the drug more active anionic (nonpolar) form in the cancer cell and ionic form (polar) in the normal cell, which avoids the interaction with normal cell and facilitate the interaction with cancer cell. In conclusion, the cancer cell selectivity with fluorescence and radiopaque properties of Ba ion linked carrageenan makes the molecule useful for tracing, imaging, and treating cancer cell with high selectivity.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"87 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and properties of vancomycin-loaded PLA-PEG-PLA microspheres by electrostatic spray technology 利用静电喷雾技术制备万古霉素负载聚乳酸-聚乙二醇-聚乳酸微球及其特性
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-03-27 DOI: 10.1515/polyeng-2023-0191
Ruimin Tang, Yan Feng, Rongying Chen, Minglong Yuan, Mingwei Yuan, Hongli Li, Dengbang Jiang
{"title":"Preparation and properties of vancomycin-loaded PLA-PEG-PLA microspheres by electrostatic spray technology","authors":"Ruimin Tang, Yan Feng, Rongying Chen, Minglong Yuan, Mingwei Yuan, Hongli Li, Dengbang Jiang","doi":"10.1515/polyeng-2023-0191","DOIUrl":"https://doi.org/10.1515/polyeng-2023-0191","url":null,"abstract":"Vancomycin in sustained release still needs to be investigated. Polylactic acid (PLA) was widely used in the biomedical field for its good biocompatibility, especially in the field of controlled drug release. In this study, polyethylene glycol (PEG) was used to modify PLA to improve the hydrophilicity of the material. The synthesis of the block copolymers was proven by infrared and nuclear magnetic characterization and the hydrophilicity was tested. Vancomycin was immobilized by coaxial electrospray, and PLA-PEG<jats:sub>6000</jats:sub>-PLA was used as the shell layer. The parameters of coaxial electrospray under this material were explored, and the effects of concentration, voltage and temperature on the formation of microspheres were systematically studied. The optimum parameters were determined as follows: concentration 20 wt%, temperature 35 °C and voltage 14 kV. The maximum encapsulation rate and drug loading were calculated to be 89.54 ± 1.22 % and 15.33 ± 0.97 %, respectively, and the cumulative release of drug-loaded microspheres was less than 45 % in 24 h with a slow releasing time of more than one month. The drug loaded microspheres showed good sustained release and good control of burst release.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"87 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of mango shell powder as a bio filler in flax-jute hybrid epoxy composites: mechanical and wear characterization 芒果壳粉作为亚麻-黄麻混合环氧树脂复合材料生物填料的潜力:机械和磨损表征
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-03-15 DOI: 10.1515/polyeng-2023-0267
Avinash Petta, Sabindra Kachhap
{"title":"Potential of mango shell powder as a bio filler in flax-jute hybrid epoxy composites: mechanical and wear characterization","authors":"Avinash Petta, Sabindra Kachhap","doi":"10.1515/polyeng-2023-0267","DOIUrl":"https://doi.org/10.1515/polyeng-2023-0267","url":null,"abstract":"The exploration of natural fillers has garnered considerable attention in response to persistent concerns about material pollution and diminishing resources. In the context of this study, one such natural filler under scrutiny is mango shell powder (MSP), a byproduct derived from mango processing. The central objective of this investigation is to assess the potential of MSP as a filler in flax-jute hybrid epoxy composites, with a keen focus on enhancing their properties. Specifically, the study aims to elucidate the impact of incorporating MSP filler on the mechanical and wear characteristics of these composites. The experimental approach involved the preparation of composite samples with varying weight percentages of MSP filler, ranging from 1 % to 9 % (1 %, 3 %, 5 %, 7 %, and 9 %), while maintaining a constant fiber and matrix weight ratio. The results obtained from the experiments revealed that composite samples containing a 7 % filler exhibited superior mechanical properties, while wear resistance demonstrated a noticeable decrease with the progressive increase in filler content. These findings suggest the potential efficacy of MSP as a filler in enhancing both the mechanical and wear characteristics of flax-jute hybrid epoxy composites, providing valuable insights for further applications in sustainable composite materials.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"11 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on influence of wettability on antiviral coating using polyethylene glycol (PEG) and acrylic binder 使用聚乙二醇(PEG)和丙烯酸粘合剂对抗病毒涂层润湿性影响的研究
IF 2 4区 工程技术
Journal of Polymer Engineering Pub Date : 2024-03-12 DOI: 10.1515/polyeng-2023-0263
Reasmyraj R. Subramaniam, Amirul Syafiq, Vengadaesvaran Balakrishnan, Muhammad Shakeel Ahmad, Nasrudin Abd Rahim, Pouya Hassandarvish
{"title":"A study on influence of wettability on antiviral coating using polyethylene glycol (PEG) and acrylic binder","authors":"Reasmyraj R. Subramaniam, Amirul Syafiq, Vengadaesvaran Balakrishnan, Muhammad Shakeel Ahmad, Nasrudin Abd Rahim, Pouya Hassandarvish","doi":"10.1515/polyeng-2023-0263","DOIUrl":"https://doi.org/10.1515/polyeng-2023-0263","url":null,"abstract":"One of the biggest problems facing medical science today is preventing viral outbreaks, which highlights the significance of research initiatives aimed at creating antimicrobial coatings for a range of products, including textiles, medical devices, and public spaces. In this study, we aimed to determine the possible antiviral effects of polyethylene glycol (PEG) coating on feline coronavirus (FCoV). The PEG coatings were synthesized by a simple mixing method with a water-based acrylic binder in different weight percentages (3, 5, 10, 15, 20, and 25 wt%). The Spearman–Karber technique was used to calculate the viral titers, which were then expressed as the tissue culture infectious dose at 50 % CPE (TCID50/ml). 20 wt% PEG could result in a 3 log<jats:sub>10</jats:sub> reduction in virus titer with an inhibition rate of approximately 99.9 % against FCoV. The increment of PEG weight percent from 0 to 25 wt% decreases the hardness and glass transition temperature of the coatings from 38.1 to 5.5 HV and 15.45 to −15.48 °C. Apart from that, the wettability analysis has revealed that PEG coating is hydrophilic with water contact angle (WCA) of around 75 ± 0.5°–85 ± 0.5°. Adding 25 wt% of PEG makes the coating to be superhydrophilic with WCA of 39.85 ± 0.5°.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"114 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信