Qingpeng He, Lei Ding, Dandan Li, Yuanjie Zhang, Sihang Zhang
{"title":"Effect of hydroxy-terminated hyperbranched polymer coated separator on the lithium-ion battery performances","authors":"Qingpeng He, Lei Ding, Dandan Li, Yuanjie Zhang, Sihang Zhang","doi":"10.1515/polyeng-2024-0026","DOIUrl":null,"url":null,"abstract":"The hydrophobicity of polyolefin separators causes poor compatibility with the internal environment of lithium-ion batteries and thus elevates lithium-ion migration barriers. In this research, hydroxy-terminated hyperbranched polymer (HTHP) coated separators are fabricated successfully based on the simple and easy-on impregnation method. Abundant hydroxyl groups in HTHP reinforce separator electrolyte affinity, generating the much lower contact angle and higher electrolyte uptake. Accordingly, HTHP-coated separators show broader electrochemical window and superior ionic conductivity and Li<jats:sup>+</jats:sup> transport number, which facilitate the Li<jats:sup>+</jats:sup> migration within porous pathways and hence maximally weaken counteranions-induced polarizations. The lower interfacial resistances also guarantee the Li<jats:sup>+</jats:sup> accelerated diffusion via the separator–electrodes interfaces. Therefore, batteries containing modified separators exhibit optimized <jats:italic>C</jats:italic>-rate capacity and cycling stability. However, immoderate HTHP coating blocks partial pores and thus restricts Li<jats:sup>+</jats:sup> transference, which deteriorates <jats:italic>C</jats:italic>-rate capacity and cycling durability in turn. This separator modification scheme possesses advantages of simple preparation, environment-friendly, and low manufacturing cost, providing practical guidance for low-cost and high-performance separator manufacture.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2024-0026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrophobicity of polyolefin separators causes poor compatibility with the internal environment of lithium-ion batteries and thus elevates lithium-ion migration barriers. In this research, hydroxy-terminated hyperbranched polymer (HTHP) coated separators are fabricated successfully based on the simple and easy-on impregnation method. Abundant hydroxyl groups in HTHP reinforce separator electrolyte affinity, generating the much lower contact angle and higher electrolyte uptake. Accordingly, HTHP-coated separators show broader electrochemical window and superior ionic conductivity and Li+ transport number, which facilitate the Li+ migration within porous pathways and hence maximally weaken counteranions-induced polarizations. The lower interfacial resistances also guarantee the Li+ accelerated diffusion via the separator–electrodes interfaces. Therefore, batteries containing modified separators exhibit optimized C-rate capacity and cycling stability. However, immoderate HTHP coating blocks partial pores and thus restricts Li+ transference, which deteriorates C-rate capacity and cycling durability in turn. This separator modification scheme possesses advantages of simple preparation, environment-friendly, and low manufacturing cost, providing practical guidance for low-cost and high-performance separator manufacture.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.