{"title":"Potential of mango shell powder as a bio filler in flax-jute hybrid epoxy composites: mechanical and wear characterization","authors":"Avinash Petta, Sabindra Kachhap","doi":"10.1515/polyeng-2023-0267","DOIUrl":null,"url":null,"abstract":"The exploration of natural fillers has garnered considerable attention in response to persistent concerns about material pollution and diminishing resources. In the context of this study, one such natural filler under scrutiny is mango shell powder (MSP), a byproduct derived from mango processing. The central objective of this investigation is to assess the potential of MSP as a filler in flax-jute hybrid epoxy composites, with a keen focus on enhancing their properties. Specifically, the study aims to elucidate the impact of incorporating MSP filler on the mechanical and wear characteristics of these composites. The experimental approach involved the preparation of composite samples with varying weight percentages of MSP filler, ranging from 1 % to 9 % (1 %, 3 %, 5 %, 7 %, and 9 %), while maintaining a constant fiber and matrix weight ratio. The results obtained from the experiments revealed that composite samples containing a 7 % filler exhibited superior mechanical properties, while wear resistance demonstrated a noticeable decrease with the progressive increase in filler content. These findings suggest the potential efficacy of MSP as a filler in enhancing both the mechanical and wear characteristics of flax-jute hybrid epoxy composites, providing valuable insights for further applications in sustainable composite materials.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0267","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of natural fillers has garnered considerable attention in response to persistent concerns about material pollution and diminishing resources. In the context of this study, one such natural filler under scrutiny is mango shell powder (MSP), a byproduct derived from mango processing. The central objective of this investigation is to assess the potential of MSP as a filler in flax-jute hybrid epoxy composites, with a keen focus on enhancing their properties. Specifically, the study aims to elucidate the impact of incorporating MSP filler on the mechanical and wear characteristics of these composites. The experimental approach involved the preparation of composite samples with varying weight percentages of MSP filler, ranging from 1 % to 9 % (1 %, 3 %, 5 %, 7 %, and 9 %), while maintaining a constant fiber and matrix weight ratio. The results obtained from the experiments revealed that composite samples containing a 7 % filler exhibited superior mechanical properties, while wear resistance demonstrated a noticeable decrease with the progressive increase in filler content. These findings suggest the potential efficacy of MSP as a filler in enhancing both the mechanical and wear characteristics of flax-jute hybrid epoxy composites, providing valuable insights for further applications in sustainable composite materials.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.