用于高性能储能应用的氮化石墨碳/二氧化锰与聚吡咯纳米复合材料的简便合成与电化学研究

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE
Joseph Raj Xavier
{"title":"用于高性能储能应用的氮化石墨碳/二氧化锰与聚吡咯纳米复合材料的简便合成与电化学研究","authors":"Joseph Raj Xavier","doi":"10.1515/polyeng-2024-0025","DOIUrl":null,"url":null,"abstract":"Manganese dioxide (MnO<jats:sub>2</jats:sub>) nanoparticles were modified by graphitic carbon nitride (GCN) and polylpyrrole (Ppy) to enhance their electrochemical performance. The surface influence, crystalline structure, and electrochemical performance of the Ppy/GCN/MnO<jats:sub>2</jats:sub> material were characterized and compared with those of pristine MnO<jats:sub>2</jats:sub>. It is found that surface modification can improve the structural stability of MnO<jats:sub>2</jats:sub> without decreasing its available specific capacitance. The electrochemical properties of synthesized Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode were evaluated using cyclic voltammetry (CV) and AC impedance techniques in 5 M KOH electrolyte. Specific capacitances of 486, 815, 921, and 1377 F/g were obtained for MnO<jats:sub>2</jats:sub>, Ppy/MnO<jats:sub>2</jats:sub>, GCN/MnO<jats:sub>2</jats:sub>, and Ppy/GCN/MnO<jats:sub>2</jats:sub>, respectively, at 5 A/g. This improvement is attributed to the synergistic effect of GCN and Ppy in the Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode material. The Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode in KOH has average specific energy and specific power densities of 172 Wh kg<jats:sup>−1</jats:sup> and 2065 W kg<jats:sup>−1</jats:sup>, respectively. Only 2 % of the capacitance’s initial value is lost after 10,000 cycles. The resulting Ppy/GCN/MnO<jats:sub>2</jats:sub> nanocomposite had very stable and porous layered structures. This work demonstrates that Ppy/GCN/MnO<jats:sub>2</jats:sub> nanomaterials exhibit good structural stability and electrochemical performance and are good materials for supercapacitor applications.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis and electrochemical investigation of graphitic carbon nitride/manganese dioxide incorporated polypyrrole nanocomposite for high-performance energy storage applications\",\"authors\":\"Joseph Raj Xavier\",\"doi\":\"10.1515/polyeng-2024-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manganese dioxide (MnO<jats:sub>2</jats:sub>) nanoparticles were modified by graphitic carbon nitride (GCN) and polylpyrrole (Ppy) to enhance their electrochemical performance. The surface influence, crystalline structure, and electrochemical performance of the Ppy/GCN/MnO<jats:sub>2</jats:sub> material were characterized and compared with those of pristine MnO<jats:sub>2</jats:sub>. It is found that surface modification can improve the structural stability of MnO<jats:sub>2</jats:sub> without decreasing its available specific capacitance. The electrochemical properties of synthesized Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode were evaluated using cyclic voltammetry (CV) and AC impedance techniques in 5 M KOH electrolyte. Specific capacitances of 486, 815, 921, and 1377 F/g were obtained for MnO<jats:sub>2</jats:sub>, Ppy/MnO<jats:sub>2</jats:sub>, GCN/MnO<jats:sub>2</jats:sub>, and Ppy/GCN/MnO<jats:sub>2</jats:sub>, respectively, at 5 A/g. This improvement is attributed to the synergistic effect of GCN and Ppy in the Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode material. The Ppy/GCN/MnO<jats:sub>2</jats:sub> electrode in KOH has average specific energy and specific power densities of 172 Wh kg<jats:sup>−1</jats:sup> and 2065 W kg<jats:sup>−1</jats:sup>, respectively. Only 2 % of the capacitance’s initial value is lost after 10,000 cycles. The resulting Ppy/GCN/MnO<jats:sub>2</jats:sub> nanocomposite had very stable and porous layered structures. This work demonstrates that Ppy/GCN/MnO<jats:sub>2</jats:sub> nanomaterials exhibit good structural stability and electrochemical performance and are good materials for supercapacitor applications.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2024-0025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2024-0025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

用石墨氮化碳(GCN)和聚吡咯(Ppy)修饰二氧化锰(MnO2)纳米颗粒,以提高其电化学性能。对 Ppy/GCN/MnO2 材料的表面影响、晶体结构和电化学性能进行了表征,并与原始 MnO2 材料进行了比较。研究发现,表面改性可以在不降低 MnO2 可用比电容的情况下提高其结构稳定性。在 5 M KOH 电解液中,使用循环伏安法(CV)和交流阻抗技术评估了合成的 Ppy/GCN/MnO2 电极的电化学特性。在 5 A/g 的条件下,MnO2、Ppy/MnO2、GCN/MnO2 和 Ppy/GCN/MnO2 的比电容分别为 486、815、921 和 1377 F/g。这一改进归功于 Ppy/GCN/MnO2 电极材料中 GCN 和 Ppy 的协同效应。KOH 中的 Ppy/GCN/MnO2 电极的平均比能量和比功率密度分别为 172 Wh kg-1 和 2065 W kg-1。经过 10,000 次循环后,电容值只损失了初始值的 2%。由此产生的 Ppy/GCN/MnO2 纳米复合材料具有非常稳定的多孔分层结构。这项研究表明,Ppy/GCN/MnO2 纳米材料具有良好的结构稳定性和电化学性能,是超级电容器应用的良好材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile synthesis and electrochemical investigation of graphitic carbon nitride/manganese dioxide incorporated polypyrrole nanocomposite for high-performance energy storage applications
Manganese dioxide (MnO2) nanoparticles were modified by graphitic carbon nitride (GCN) and polylpyrrole (Ppy) to enhance their electrochemical performance. The surface influence, crystalline structure, and electrochemical performance of the Ppy/GCN/MnO2 material were characterized and compared with those of pristine MnO2. It is found that surface modification can improve the structural stability of MnO2 without decreasing its available specific capacitance. The electrochemical properties of synthesized Ppy/GCN/MnO2 electrode were evaluated using cyclic voltammetry (CV) and AC impedance techniques in 5 M KOH electrolyte. Specific capacitances of 486, 815, 921, and 1377 F/g were obtained for MnO2, Ppy/MnO2, GCN/MnO2, and Ppy/GCN/MnO2, respectively, at 5 A/g. This improvement is attributed to the synergistic effect of GCN and Ppy in the Ppy/GCN/MnO2 electrode material. The Ppy/GCN/MnO2 electrode in KOH has average specific energy and specific power densities of 172 Wh kg−1 and 2065 W kg−1, respectively. Only 2 % of the capacitance’s initial value is lost after 10,000 cycles. The resulting Ppy/GCN/MnO2 nanocomposite had very stable and porous layered structures. This work demonstrates that Ppy/GCN/MnO2 nanomaterials exhibit good structural stability and electrochemical performance and are good materials for supercapacitor applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymer Engineering
Journal of Polymer Engineering 工程技术-高分子科学
CiteScore
3.20
自引率
5.00%
发文量
95
审稿时长
2.5 months
期刊介绍: Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信