Journal of Plant Research最新文献

筛选
英文 中文
Abscisic acid enhances non-photochemical quenching through SnRK2 and ABI3 in Physcomitrium patens. 脱落酸通过SnRK2和ABI3促进了假丝胞的非光化学猝灭。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-04-07 DOI: 10.1007/s10265-025-01627-7
Chang-Hyun Maeng, Takuya Fujita, Junko Kishimoto, Ryouichi Tanaka, Atsushi Takabayashi, Tomomichi Fujita
{"title":"Abscisic acid enhances non-photochemical quenching through SnRK2 and ABI3 in Physcomitrium patens.","authors":"Chang-Hyun Maeng, Takuya Fujita, Junko Kishimoto, Ryouichi Tanaka, Atsushi Takabayashi, Tomomichi Fujita","doi":"10.1007/s10265-025-01627-7","DOIUrl":"https://doi.org/10.1007/s10265-025-01627-7","url":null,"abstract":"<p><p>The transition of plants in the green lineage from aquatic to terrestrial environments during the bryophyte stage marked a pivotal point in evolution. Successful terrestrialization required evolutionary adaptations to harsh and fluctuating light conditions, where direct irradiation is stronger than in aquatic environments. To cope with these challenges, plants evolved regulatory mechanisms to control cellular activities. One such acclimation is rapidly reversible, energy-dependent non-photochemical quenching (NPQ), which dissipates excess light energy as heat to protect the photosynthetic apparatus. Another critical innovation is abscisic acid (ABA) signaling, believed to have first emerged in bryophytes. Here, we reveal a potential link between these two key acclimations in bryophytes. We demonstrate that exogenous ABA induces NPQ in the moss Physcomitrium patens, increasing the levels of LHCSR, a key NPQ regulator, while concurrently decreasing PsbS. Exogenous ABA also enhances the xanthophyll cycle pigments, contributing to NPQ. In mutants deficient in ABA signaling components, including SNF1-related kinase 2 (SnRK2) and the transcription factor, Abscisic Acid-Insensitive 3 (ABI3), ABA-induced NPQ, LHCSR and PsbS expression, and xanthophyll cycle pigment accumulation were significantly reduced. These findings suggest that exogenous ABA enhances NPQ through the SnRK2 and ABI3-mediated signaling pathway by promoting LHCSR expression and xanthophyll cycle pigment production. We propose that the integration of ABA signaling and NPQ represent a critical evolutionary milestone, enabling early land plants to adapt and thrive in terrestrial environments.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUPPRESOR OF GAMMA RESPONSE 1 promotes early onset of endoreplication upon DNA double-strand breaks by inducing CCS52A1 expression in Arabidopsis roots. 抑制γ反应1通过诱导CCS52A1在拟南芥根中的表达,促进DNA双链断裂时的早期内复制。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-04-07 DOI: 10.1007/s10265-025-01630-y
Toshiki Wada, Ayako N Sakamoto, Masaaki Umeda, Naoki Takahashi
{"title":"SUPPRESOR OF GAMMA RESPONSE 1 promotes early onset of endoreplication upon DNA double-strand breaks by inducing CCS52A1 expression in Arabidopsis roots.","authors":"Toshiki Wada, Ayako N Sakamoto, Masaaki Umeda, Naoki Takahashi","doi":"10.1007/s10265-025-01630-y","DOIUrl":"10.1007/s10265-025-01630-y","url":null,"abstract":"<p><p>Living organisms are constantly at the risk of DNA damage caused by factors such as DNA replication errors, reactive oxygen species, and UV radiation. In plants, DNA damage activates the NAC-type transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) that governs DNA damage responses such as cell cycle arrest, stem cell death, and early onset of endoreplication. However, molecular mechanisms underlying the early induction of endoreplication onset in response to DNA damage remain elusive. In this study, we show that CELL CYCLE SWITCH 52 A1 (CCS52A1), an activator of the APC/C E3 ligase, plays a major role in the early onset of endoreplication in response to DNA double-strand breaks (DSBs) in Arabidopsis roots. Upon DSBs, SOG1 directly binds to the CCS52A1 locus, thereby inducing its expression. Moreover, early transition to endoreplication in response to DSBs is suppressed in ccs52a1 knockout roots. Our data propose that increased polyploidy may function as a unique adaptative mechanism to genotoxic stress in plants.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Contributions of lignification, tissue arrangement patterns, and cross-sectional area to whole-stem mechanical properties in Arabidopsis thaliana. 修正:拟南芥木质化、组织排列模式和横截面积对全茎机械特性的贡献。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-04-07 DOI: 10.1007/s10265-025-01632-w
Mariko Asaoka, Eric Badel, Ali Ferjani, Kazuhiko Nishitani, Olivier Hamant
{"title":"Correction to: Contributions of lignification, tissue arrangement patterns, and cross-sectional area to whole-stem mechanical properties in Arabidopsis thaliana.","authors":"Mariko Asaoka, Eric Badel, Ali Ferjani, Kazuhiko Nishitani, Olivier Hamant","doi":"10.1007/s10265-025-01632-w","DOIUrl":"https://doi.org/10.1007/s10265-025-01632-w","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring candidate genes related to pollen abortion in garlic (Allium sativum) based on cytological studies and transcriptome sequencing. 基于细胞学研究和转录组测序,探索大蒜花粉败育相关候选基因。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-04-07 DOI: 10.1007/s10265-025-01631-x
Baoli Fan, Qian Chen, Shiyao Zhou, Yanting Zhang, Yuwen Wang, Yuntao Shang, Na Zhang, Xiaoying Liu, Zhenying Wang
{"title":"Exploring candidate genes related to pollen abortion in garlic (Allium sativum) based on cytological studies and transcriptome sequencing.","authors":"Baoli Fan, Qian Chen, Shiyao Zhou, Yanting Zhang, Yuwen Wang, Yuntao Shang, Na Zhang, Xiaoying Liu, Zhenying Wang","doi":"10.1007/s10265-025-01631-x","DOIUrl":"https://doi.org/10.1007/s10265-025-01631-x","url":null,"abstract":"<p><p>The commercially cultivated garlic varieties are infertile, leading to challenges in conventional hybrid breeding. Xinjiang garlic exhibits visually normal development of both androecium and gynoecium, but most pollen grains are not viable, thus allowing for the identification of flower development-related genes through combined morphological, anatomical, and cytological methods with transcriptome analysis. The inflorescence meristem differentiation of Xinjiang garlic plants was initiated after the 6th-7th leaves emerged, implying the transition from vegetative growth to reproductive growth. With the development of flower organs after bolting, normal pollen mother cell meiosis but no viable pollen grains were detected through triphenyl tetrazolium chloride (TTC) staining. Delayed tapetal degeneration, the gap between the tapetum and the middle layer, and degenerating and aborting anther are visible during anther development. There were 25 differentially expressed MYB genes and 64 flowering pathway related genes at different stages of flower development. The R2R3-MYB genes enriched in Module 22 are involved in the development of the tapetum and pollen. The co-expression network analysis showed that most MYB genes are related to flowering regulatory genes. The expression pattern of MYB35, MYB26, MYB80 and MMD1 may cause delayed degradation of the tapetum, or abnormal development of the pollen wall leading to pollen abortion.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Greetings from the new Editor-in-Chief of the Journal of Plant Research 2025. 《植物研究杂志2025》新任总编辑向您问好。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-04-07 DOI: 10.1007/s10265-025-01635-7
Noriko Inada
{"title":"Greetings from the new Editor-in-Chief of the Journal of Plant Research 2025.","authors":"Noriko Inada","doi":"10.1007/s10265-025-01635-7","DOIUrl":"https://doi.org/10.1007/s10265-025-01635-7","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of alkane and membrane lipid alteration in Synechococcus elongatus PCC 7942 under salt and light stresses. 盐和光胁迫下长聚球菌PCC 7942中烷烃和膜脂改变的协同效应
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2024-12-31 DOI: 10.1007/s10265-024-01613-5
Arif Agung Wibowo, Koichiro Awai
{"title":"Synergistic effect of alkane and membrane lipid alteration in Synechococcus elongatus PCC 7942 under salt and light stresses.","authors":"Arif Agung Wibowo, Koichiro Awai","doi":"10.1007/s10265-024-01613-5","DOIUrl":"10.1007/s10265-024-01613-5","url":null,"abstract":"<p><p>Salinity and light markedly influence cyanobacterial viability. High salinity disrupts the osmotic balance, while excess light energy affects redox potential in the cells. Regulating the ratio of saturated and unsaturated alka(e)ne and fatty acids in cyanobacteria is thought to have crucial roles in coping with these stresses by regulating membrane fluidity. In Synechococcus elongatus PCC 7942 (Syn7942), alkane is produced from fatty acid metabolites using acyl-acyl carrier protein reductase (Aar) and aldehyde-deformylating oxygenase (Ado) enzymes. However, the role of alka(e)nes and their correlation with fatty acid-related compounds, especially under salinity stress, is not yet fully understood. This study explored the significance of the natural alka(e)ne biosynthesis pathway using Syn7942. The role of alka(e)ne was assessed using single and double knockout mutants of the aar and/or ado genes in this biosynthetic process. The alka(e)ne levels and membrane lipid content exhibited an inverse relationship, correlating with cell fluidity under high-salinity and high-light conditions. The absence of alka(e)ne resulted in a severe growth phenotype of Δado and Δaar/Δado under high-salinity conditions and less severe under high-light conditions. In addition, feeding with C15:0 and/or C17:0 alkanes complemented the growth phenotype with different accumulation profiles. The Δaar mutant exhibited higher resistance to high salinity than the Syn7942 WT, indicating the importance of Ado for survival at high salinity. Overall, lipid-related compounds, especially alka(e)nes, markedly contribute to cell integrity maintenance under high-salinity conditions by regulating membrane rigidity and fluidity.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"365-376"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal changes in pigment content in overwintering and current-year leaves of Sasa senanensis from snowmelt to before leaf-fall of canopy deciduous trees. 雪融雪期至冠层落叶树落叶前雪沙越冬叶和年叶色素含量的季节变化
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2024-12-17 DOI: 10.1007/s10265-024-01607-3
Kiyomi Ono, Megumi Hashiguchi, Ryouichi Tanaka, Toshihiko Hara
{"title":"Seasonal changes in pigment content in overwintering and current-year leaves of Sasa senanensis from snowmelt to before leaf-fall of canopy deciduous trees.","authors":"Kiyomi Ono, Megumi Hashiguchi, Ryouichi Tanaka, Toshihiko Hara","doi":"10.1007/s10265-024-01607-3","DOIUrl":"10.1007/s10265-024-01607-3","url":null,"abstract":"<p><p>Sasa senanensis (a dwarf bamboo), an evergreen herbaceous plant native to the cool temperate regions of eastern Asia, endures seasonal temperature fluctuations and significant variations in light intensity typical for understory plants. Following snowmelt in early spring, the light intensity received by Sasa leaves surges, then diminishes as the canopy of upper deciduous trees develops. The current-year leaves of S. senanensis unfold under these shaded conditions, rendering the preservation of overwintering leaves vital for maintaining photosynthetic productivity in early spring. This study investigated the adaptations of overwintering leaves of S. senanensis to the low temperatures and elevated light conditions typical of early spring, examining whether these leaves dissipate absorbed light energy as heat and/or reduce their antenna size in response to increased light levels. Comprehensive analyses of Fv/Fm and photosynthetic pigment compositions were conducted throughout the spring to autumn seasons from 2014 to 2017. Our results indicate that Fv/Fm in overwintering leaves was initially low in early spring but increased gradually before the onset of shading, maintaining high levels under shaded conditions across all examined years. The chlorophyll a/b ratio increased post-snowmelt and decreased with intensified shading annually, with the exception of 2015, suggesting that reductions in antenna size are not essential for Fv/Fm recovery. Furthermore, the quantities and de-epoxidation state of xanthophyll cycle pigments increased after snowmelt despite rising temperatures, then decreased with progressive shading each year, indicating that overwintering leaves adapt to early spring conditions by modulating their xanthophyll cycle pigments. This study demonstrates that the overwintering leaves of S. senanensis exhibit a flexible response in photosystem pigments to variations in the light environment.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"215-230"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142835904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlorophyll fluorescence responses to CO2 availability reveal crassulacean acid metabolism in epiphytic orchids. 叶绿素荧光对CO2有效性的响应揭示了附生兰花的天冬酰胺酸代谢。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2024-12-24 DOI: 10.1007/s10265-024-01608-2
Sae Bekki, Kenji Suetsugu, Koichi Kobayashi
{"title":"Chlorophyll fluorescence responses to CO<sub>2</sub> availability reveal crassulacean acid metabolism in epiphytic orchids.","authors":"Sae Bekki, Kenji Suetsugu, Koichi Kobayashi","doi":"10.1007/s10265-024-01608-2","DOIUrl":"10.1007/s10265-024-01608-2","url":null,"abstract":"<p><p>Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO<sub>2</sub> and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO<sub>2</sub> elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids. In CAM-performing Kalanchoe species, the effective quantum yield of photosystem II showed no change in response to CO<sub>2</sub> elimination during the daytime but decreased with CO<sub>2</sub> elimination at dusk. We applied this method to reveal the photosynthetic mode of epiphytic orchids and found that Gastrochilus japonicus, Oberonia japonica, and Bulbophyllum inconspicuum, but not B. drymoglossum, are constitutive CAM plants, which were also confirmed by malate determination. Our data propose a novel approach to identify and characterize CAM plants without labor-intensive experimental procedures. Although B. drymoglossum leaves had relatively high malate content, they did not depend on it to perform photosynthesis even under water-deficient or increased light conditions. Anatomical comparisons revealed a notable difference in leaf structure between B. drymoglossum and B. inconspicuum; B. drymoglossum leaves possess large water storage tissue internally, unlike B. inconspicuum leaves, which develop pseudobulbs. Our findings suggest different evolutionary adaptations to water deficit between closely related B. drymoglossum and B. inconspicuum.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"323-336"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of ultra-weak photon emission imaging in plant stress assessment. 超弱光子发射成像在植物胁迫评估中的应用。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2025-01-05 DOI: 10.1007/s10265-024-01600-w
Ankush Prasad, Eliška Mihačová, Renuka Ramalingam Manoharan, Pavel Pospíšil
{"title":"Application of ultra-weak photon emission imaging in plant stress assessment.","authors":"Ankush Prasad, Eliška Mihačová, Renuka Ramalingam Manoharan, Pavel Pospíšil","doi":"10.1007/s10265-024-01600-w","DOIUrl":"10.1007/s10265-024-01600-w","url":null,"abstract":"<p><p>The oxidative damage induced by abiotic stress factors such as salinity, drought, extreme temperatures, heavy metals, pollution, and high irradiance has been studied in Arabidopsis thaliana. Ultra-weak photon emission (UPE) is presented as a signature reflecting the extent of the oxidation process and/or damage. It can be used to predict the physiological state and general health of plants. This study presents an overview of a potential research platform where the technique can be applied. The results presented can aid in providing invaluable information for developing strategies to mitigate abiotic stress in crops by improving plant breeding programs with a focus on enhancing tolerance. This study evaluates the applicability of charged couple device (CCD) imaging in evaluating plant stress and degree of damage and to discuss the advantages and limitations of the claimed non-invasive label-free tool.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"389-400"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated metabolomic and transcriptomic strategies to reveal adaptive mechanisms in barley plant during germination stage under waterlogging stress. 综合代谢组学和转录组学策略揭示大麦萌发期对涝渍胁迫的适应机制。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2025-01-26 DOI: 10.1007/s10265-025-01616-w
Haiye Luan, Jiajia Gao, Yu Li, Xin Qu, Jinghan Yang, Xin Qian, Meng Xu, Miao Sun, Xiao Xu, Huiquan Shen, Yinghu Zhang, Gongneng Feng
{"title":"Integrated metabolomic and transcriptomic strategies to reveal adaptive mechanisms in barley plant during germination stage under waterlogging stress.","authors":"Haiye Luan, Jiajia Gao, Yu Li, Xin Qu, Jinghan Yang, Xin Qian, Meng Xu, Miao Sun, Xiao Xu, Huiquan Shen, Yinghu Zhang, Gongneng Feng","doi":"10.1007/s10265-025-01616-w","DOIUrl":"10.1007/s10265-025-01616-w","url":null,"abstract":"<p><p>Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley. Seed germination plays a critical role in the establishment of seedlings and is significantly impacted by the presence of waterlogging stress. However, there is a limited understanding of the regulatory mechanisms of gene expression and metabolic processes in barley during the germination stage under waterlogging stress. This study aimed to investigate the metabolome and transcriptome responses in germinating barley seeds under waterlogging stress. The findings of the study revealed that waterlogging stress sharply decreased seed germination rate and seedling growth. The tolerant genotype (LLZDM) exhibited higher levels of antioxidase activities and lower malondialdehyde (MDA) content in comparison to the sensitive genotype (NN). In addition, waterlogging induced 86 and 85 differentially expressed metabolites (DEMs) in LLZDM and NN, respectively. Concurrently, transcriptome analysis identified 1776 and 839 differentially expressed genes (DEGs) in LLZDM and NN, respectively. Notably, the expression of genes associated with redox reactions, hormone regulation, and other biological processes were altered in response to waterlogging stress. Furthermore, the integrated transcriptomic and metabolomic analyses revealed that the DEGs and DEMs implicated in mitigating waterlogging stress primarily pertained to the regulation of pyruvate metabolism and flavonoid biosynthesis. Moreover, waterlogging might promote flavonoid biosynthesis by regulating 15 flavonoid-related genes and 10 metabolites. The present research provides deeper insights into the overall understanding of waterlogging-tolerant mechanisms in barley during the germination process.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"289-302"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信