Pradeep K Agarwal, Parinita Agarwal, Anjali Chittora, Adarsh Bhawsar, Treesa Thomas
{"title":"Aeluropus lagopoides: an important halophyte with key physiological and molecular mechanisms for salinity tolerance and a unique genetic resource for developing climate resilient crops.","authors":"Pradeep K Agarwal, Parinita Agarwal, Anjali Chittora, Adarsh Bhawsar, Treesa Thomas","doi":"10.1007/s10265-025-01640-w","DOIUrl":"10.1007/s10265-025-01640-w","url":null,"abstract":"<p><p>Aeluropus lagopoides is salt secreting halophytic perennial grass that commonly grows in coastal regions. Under excessive saline conditions, A. lagopoides is able to thrive and completes its life cycle. It has developed various adaptive mechanisms to tolerate harsh environmental conditions. Aeluropus follow the novel mechanism of salt secretion by excreting Na<sup>+</sup> from the leaf sheath and stem of the plant in the form of salt crystals. Various salt responsive genes and transcription factors have been studied under salinity stress in A. lagopoides. Economically important phytochemicals are also present in this plant, thus, making it industrially important. Utilization of salt stress responsive genes and transcription factors in developing salt tolerant transgenics crops can also provide significant benefits, and potentially boost the agricultural industry for sustainable growth and production.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"535-554"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariko Asaoka, Eric Badel, Ali Ferjani, Kazuhiko Nishitani, Olivier Hamant
{"title":"Correction to: Contributions of lignification, tissue arrangement patterns, and cross-sectional area to whole-stem mechanical properties in Arabidopsis thaliana.","authors":"Mariko Asaoka, Eric Badel, Ali Ferjani, Kazuhiko Nishitani, Olivier Hamant","doi":"10.1007/s10265-025-01632-w","DOIUrl":"10.1007/s10265-025-01632-w","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"697"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic changes in chromatin structure and transcriptional activity in the generative cells of Lilium longiflorum.","authors":"Mio K Shibuta, Tsugumi Aso, Yutsuki Okawa","doi":"10.1007/s10265-025-01637-5","DOIUrl":"10.1007/s10265-025-01637-5","url":null,"abstract":"<p><p>Pollen is required for fertilization and the associated production of seeds and fruits, which are important for human nutrition. Research on the tricellular pollen of Arabidopsis thaliana revealed that chromatin is highly condensed and transcriptional activity is suppressed in sperm cells. However, comprehensive structural investigations involving generative cells of bicellular pollen have not been conducted. In this study, we provide relevant insights into other angiosperms that produce bicellular pollen. Lilium longiflorum, which has large and easily observable nuclei, was used for a detailed analysis of the chromatin structure and transcriptionally active regions in pollen and pollen tubes. Chromatin was condensed, resulting in a ribbon-like structure that was clearly visible in mature generative cell nuclei. Additionally, transcriptionally active regions were restricted to the intersections of chromatin as pollen desiccated. Although de novo transcription was revealed to be unnecessary for pollen tube growth, transcriptional activity temporarily resumed before generative cell division during pollen tube growth. Moreover, the inhibition of de novo transcription influenced changes in nuclear morphology. In this study, the distinctive chromatin structures and transcriptional activity states in generative cell nuclei of bicellular pollen were elucidated, with the generated data contributing to a deeper understanding of transcription and other regulatory mechanisms involved in pollen maturation and pollen tube growth.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"653-666"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144031097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suk Ling Wee, Shwu Bing Tan, Sue Han Tan, Bernard Kok Bang Lee
{"title":"Correction to: Bud development, flower phenology and life history of holoparasitic Rafesia cantleyi.","authors":"Suk Ling Wee, Shwu Bing Tan, Sue Han Tan, Bernard Kok Bang Lee","doi":"10.1007/s10265-025-01633-9","DOIUrl":"10.1007/s10265-025-01633-9","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"699"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144030539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Androecium homologies in eight-staminate maples: a developmental study.","authors":"Alexander E Zavialov, Margarita V Remizowa","doi":"10.1007/s10265-025-01641-9","DOIUrl":"10.1007/s10265-025-01641-9","url":null,"abstract":"<p><p>The genus Acer belongs to the family Sapindaceae, whose representatives are characterized by a pentamerous perianth but typically possess only eight stamens. Such an androecium is believed to have evolved through the loss of two stamens. However, there is still no consensus on the origin of eight-staminate androecium including the positions of the two lost stamens and the pathway of their reduction compared to other Sapindaceae. We examined the early stages of flower development in five maple species belonging to different sections - four species with eight stamens and one species with ten stamens - using scanning electron microscopy. Measurements were performed to analyze the relative positions of stamen primordia, their size, and the floral meristem surface area. In addition, the perianth and androecium vasculature was studied to reveal petal-stamen complexes. We found that in three of four 8-staminate species, three stamens are initiated from common petal-stamen primordia, and five arise from single primordia. In A. tegmentosum Maxim., four stamens appear from common primordia with petals, and four from single primordia. Despite developmental differences, stamen distribution within the flower and the angles between adjacent stamens indicate a similar androecium construction in all species. In most species with eight stamens, the differences between two andoecial whorls have vanished. In contrast, A. nikoense (Miq.) Maxim., with ten stamens, possesses two distinct stamen whorls, the antepetalous stamens are initiated from common primordia. In the 8-staminate androecia of the genus Acer, the same two stamens have been lost as in other Sapindaceae. Within genus Acer, there is a certain decrease in the relative size of the floral meristem, accompanied by an increase in the number of common petal-stamen primordia and increased heterogeneity of the androecium (in A. tegmentosum) or reduction of some floral organs.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"603-624"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143999991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baoli Fan, Qian Chen, Shiyao Zhou, Yanting Zhang, Yuwen Wang, Yuntao Shang, Na Zhang, Xiaoying Liu, Zhenying Wang
{"title":"Exploring candidate genes related to pollen abortion in garlic (Allium sativum) based on cytological studies and transcriptome sequencing.","authors":"Baoli Fan, Qian Chen, Shiyao Zhou, Yanting Zhang, Yuwen Wang, Yuntao Shang, Na Zhang, Xiaoying Liu, Zhenying Wang","doi":"10.1007/s10265-025-01631-x","DOIUrl":"10.1007/s10265-025-01631-x","url":null,"abstract":"<p><p>The commercially cultivated garlic varieties are infertile, leading to challenges in conventional hybrid breeding. Xinjiang garlic exhibits visually normal development of both androecium and gynoecium, but most pollen grains are not viable, thus allowing for the identification of flower development-related genes through combined morphological, anatomical, and cytological methods with transcriptome analysis. The inflorescence meristem differentiation of Xinjiang garlic plants was initiated after the 6th-7th leaves emerged, implying the transition from vegetative growth to reproductive growth. With the development of flower organs after bolting, normal pollen mother cell meiosis but no viable pollen grains were detected through triphenyl tetrazolium chloride (TTC) staining. Delayed tapetal degeneration, the gap between the tapetum and the middle layer, and degenerating and aborting anther are visible during anther development. There were 25 differentially expressed MYB genes and 64 flowering pathway related genes at different stages of flower development. The R2R3-MYB genes enriched in Module 22 are involved in the development of the tapetum and pollen. The co-expression network analysis showed that most MYB genes are related to flowering regulatory genes. The expression pattern of MYB35, MYB26, MYB80 and MMD1 may cause delayed degradation of the tapetum, or abnormal development of the pollen wall leading to pollen abortion.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"637-651"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2025 Awards in the Journal of Plant Research.","authors":"Noriko Inada","doi":"10.1007/s10265-025-01652-6","DOIUrl":"https://doi.org/10.1007/s10265-025-01652-6","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144512070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-cell views of fate reprogramming in de novo organogenesis.","authors":"Hatsune Morinaka, Yu Chen, Keiko Sugimoto","doi":"10.1007/s10265-025-01644-6","DOIUrl":"https://doi.org/10.1007/s10265-025-01644-6","url":null,"abstract":"<p><p>De novo organogenesis is a key process in plant development and regeneration, enabling plants to adapt and survive under suboptimal conditions. Studying the molecular mechanisms of cellular reprogramming that drives new organ formation has been challenging since only a subset of cells among heterogeneous cell populations change the cell fate. Recent advancements in single-cell technologies, however, have begun to provide unprecedented insights into the cell identities and their developmental trajectories, offering a deeper understanding of cell fate transitions during this process. In this review we highlight how single-cell approaches help uncover the regulatory networks that govern cell fate reprogramming and propose future directions for improving temporal and spatial resolution to further advance this emerging field.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144027176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The WSD-type wax ester synthase is widely conserved in streptophytes and crucial for floral organ formation under high humidity in land plants.","authors":"Takashi Nobusawa, Yuko Sasaki-Sekimoto, Hiroyuki Ohta, Makoto Kusaba","doi":"10.1007/s10265-025-01628-6","DOIUrl":"10.1007/s10265-025-01628-6","url":null,"abstract":"<p><p>Cuticular waxes are a complex mixture of long-chain aliphatic compounds, including alkanes, aldehydes, alcohols, ketones, and esters, that cover the outer surface of most terrestrial plants. While cuticular waxes play a pivotal role in plant adaptation to various environmental stresses, the specific roles of individual molecular species, particularly wax esters (WEs), remain poorly understood. In this study, we investigate the evolution and function of wax ester biosynthesis in land plants, focusing on the WSD (wax synthase/DGAT) enzyme family. We demonstrate that the ancestral origin of WSD enzymes traces back to streptophyte algae, specifically Klebsormidium nitens (KnWSD1). Our findings provide evidence that KnWSD1 functions as a monofunctional WSD catalyzing WE formation without producing triacylglycerols (TAGs). By generating Arabidopsis mutants with multiple WSD gene knockouts, we uncover a crucial role for WEs in supporting floral organ development under high humidity. Our results reveal that WEs are essential for floral organ development and provide new insights into their evolutionary significance in plant adaptation to terrestrial environments.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"497-509"},"PeriodicalIF":2.7,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of fieldwork-friendly coffee blender-based extraction methods and leaf tissue storage on the transcriptome of non-model plants.","authors":"Shine-Undarga Dagva, Josephine Galipon","doi":"10.1007/s10265-025-01624-w","DOIUrl":"10.1007/s10265-025-01624-w","url":null,"abstract":"<p><p>The adaptation of plants to environmental conditions involves a transcriptional response. \"Field transcriptomics\" is an emerging concept for studying plants in their natural habitat. However, this term includes studies in which cold storage was possible until further processing in a laboratory. Previous studies proposing onsite RNA extraction methods are limited to descriptions of RNA purity, quantity, and quality, and lack a thorough evaluation of transcriptome quality, and transcriptomic evaluations of RNA storage solutions in plants are, to our knowledge, only available for periods of less than a day. This issue is critical for studying plants in geographically difficult-to-access regions, where keeping the cold chain is unrealistic. In this study, the transcriptome of the non-model plant Helonias orientalis (order: Liliales) was evaluated before and after storage of the leaf tissue for one and fourteen days at 25 °C in RNAlater and TRIzol, respectively. Additionally, field-friendly protocols were similarly evaluated for onsite plant RNA extraction at ambient temperature with lightweight equipment that can run on a portable generator, including a guanidine isothiocyanate-free protocol that is compatible with the polyphenol-rich wild strawberry Fragaria vesca. The quality of the transcriptome assembly after 1-day storage and our optimized onsite methods had similar results to that of the state-of-the-art. However, in terms of differential expression analysis, onsite extraction methods performed better overall than the stored tissue samples. We expect that our onsite RNA extraction methods will provide valuable insights into the transcriptional regulation of plants in areas where research equipment is difficult to access.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"511-524"},"PeriodicalIF":2.7,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}