Synergistic effect of alkane and membrane lipid alteration in Synechococcus elongatus PCC 7942 under salt and light stresses.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Arif Agung Wibowo, Koichiro Awai
{"title":"Synergistic effect of alkane and membrane lipid alteration in Synechococcus elongatus PCC 7942 under salt and light stresses.","authors":"Arif Agung Wibowo, Koichiro Awai","doi":"10.1007/s10265-024-01613-5","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity and light markedly influence cyanobacterial viability. High salinity disrupts the osmotic balance, while excess light energy affects redox potential in the cells. Regulating the ratio of saturated and unsaturated alka(e)ne and fatty acids in cyanobacteria is thought to have crucial roles in coping with these stresses by regulating membrane fluidity. In Synechococcus elongatus PCC 7942 (Syn7942), alkane is produced from fatty acid metabolites using acyl-acyl carrier protein reductase (Aar) and aldehyde-deformylating oxygenase (Ado) enzymes. However, the role of alka(e)nes and their correlation with fatty acid-related compounds, especially under salinity stress, is not yet fully understood. This study explored the significance of the natural alka(e)ne biosynthesis pathway using Syn7942. The role of alka(e)ne was assessed using single and double knockout mutants of the aar and/or ado genes in this biosynthetic process. The alka(e)ne levels and membrane lipid content exhibited an inverse relationship, correlating with cell fluidity under high-salinity and high-light conditions. The absence of alka(e)ne resulted in a severe growth phenotype of Δado and Δaar/Δado under high-salinity conditions and less severe under high-light conditions. In addition, feeding with C15:0 and/or C17:0 alkanes complemented the growth phenotype with different accumulation profiles. The Δaar mutant exhibited higher resistance to high salinity than the Syn7942 WT, indicating the importance of Ado for survival at high salinity. Overall, lipid-related compounds, especially alka(e)nes, markedly contribute to cell integrity maintenance under high-salinity conditions by regulating membrane rigidity and fluidity.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01613-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Salinity and light markedly influence cyanobacterial viability. High salinity disrupts the osmotic balance, while excess light energy affects redox potential in the cells. Regulating the ratio of saturated and unsaturated alka(e)ne and fatty acids in cyanobacteria is thought to have crucial roles in coping with these stresses by regulating membrane fluidity. In Synechococcus elongatus PCC 7942 (Syn7942), alkane is produced from fatty acid metabolites using acyl-acyl carrier protein reductase (Aar) and aldehyde-deformylating oxygenase (Ado) enzymes. However, the role of alka(e)nes and their correlation with fatty acid-related compounds, especially under salinity stress, is not yet fully understood. This study explored the significance of the natural alka(e)ne biosynthesis pathway using Syn7942. The role of alka(e)ne was assessed using single and double knockout mutants of the aar and/or ado genes in this biosynthetic process. The alka(e)ne levels and membrane lipid content exhibited an inverse relationship, correlating with cell fluidity under high-salinity and high-light conditions. The absence of alka(e)ne resulted in a severe growth phenotype of Δado and Δaar/Δado under high-salinity conditions and less severe under high-light conditions. In addition, feeding with C15:0 and/or C17:0 alkanes complemented the growth phenotype with different accumulation profiles. The Δaar mutant exhibited higher resistance to high salinity than the Syn7942 WT, indicating the importance of Ado for survival at high salinity. Overall, lipid-related compounds, especially alka(e)nes, markedly contribute to cell integrity maintenance under high-salinity conditions by regulating membrane rigidity and fluidity.

盐和光胁迫下长聚球菌PCC 7942中烷烃和膜脂改变的协同效应
盐度和光照显著影响蓝藻的生存能力。高盐度破坏渗透平衡,而过量的光能影响细胞中的氧化还原电位。调节蓝藻中饱和和不饱和碱(e)ne和脂肪酸的比例被认为是通过调节膜流动性来应对这些压力的关键作用。在长聚球菌PCC 7942 (Syn7942)中,脂肪酸代谢产物通过酰基酰基载体蛋白还原酶(Aar)和醛去甲酰基加氧酶(Ado)产生烷烃。然而,碱(e)nes的作用及其与脂肪酸相关化合物的关系,特别是在盐度胁迫下,尚未完全了解。本研究利用Syn7942探讨天然碱(e)ne生物合成途径的意义。利用aar和/或ado基因的单敲除和双敲除突变体来评估alka(e)ne在生物合成过程中的作用。在高盐度和强光条件下,碱(e)ne水平与膜脂含量呈反比关系,与细胞流动性相关。在高盐度条件下,alka(e)ne的缺失导致Δado和Δaar/Δado的生长表型严重,而在强光条件下则不那么严重。此外,投喂C15:0和/或C17:0烷烃补充了不同积累曲线的生长表型。Δaar突变体比Syn7942 WT表现出更高的高盐抗性,表明Ado对高盐环境下存活的重要性。总的来说,脂质相关化合物,特别是碱(e)nes,通过调节膜刚性和流动性,显著有助于高盐度条件下细胞完整性的维持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信