Gabriela Brito Costa, Gustavo Júnio Santos Oliveira, João Paulo Souza
{"title":"Phenotypic plasticity does not prevent impairment of aboveground biomass production due to increased light and water deficit in Dimorphandra exaltata, an endangered species.","authors":"Gabriela Brito Costa, Gustavo Júnio Santos Oliveira, João Paulo Souza","doi":"10.1007/s10265-024-01598-1","DOIUrl":"https://doi.org/10.1007/s10265-024-01598-1","url":null,"abstract":"<p><p>Phenotypic plasticity may allow plant species to cope with environmental variability that influences plant growth and may limit the distribution of a species. The present study investigated the morphophysiology and phenotypic plasticity responses due to light and water variability of young Dimorphandra exaltata plants, an endemic threatened tree from the Atlantic Forest. After emergence, plants were grown in two light conditions: shading (70%) and full sun. At 160 days old, we measured chlorophyll a fluorescence, chlorophyll indices, and biomass allocation. Afterward, the plants were subdivided into two water regimes: irrigation vs suspension of irrigation. At 310 days old, morphophysiological measurements and stem water potential were taken. D. exaltata plants showed higher specific leaf area (SLA, 160 days old) and chlorophyll b (310 days old) under shading. Over time, plants under shading showed a decrease in SLA. Also, there was a decrease in the leaf area ratio in both light treatments and an increase in the phenotypic plasticity index. Even showing morphological adjustments to light and water deficit, the higher biomass allocation to roots at the expense of the aboveground part could impair the growth of young plants in understory areas. The phenotypic plasticity presented by D. exaltata does not guarantee that the species can withstand severe disturbance while maintaining normal development. Therefore, it is important to understand the effects of ecosystem fragmentation and water variation and their impacts on the maintenance of species in their areas of occurrence, especially endangered species such as D. exaltata.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea A Zanini, Martin C Dominguez, Marianela S Rodríguez
{"title":"Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves.","authors":"Andrea A Zanini, Martin C Dominguez, Marianela S Rodríguez","doi":"10.1007/s10265-024-01595-4","DOIUrl":"10.1007/s10265-024-01595-4","url":null,"abstract":"<p><p>Cassava common mosaic virus (CsCMV) is a potexvirus that impairs chloroplast and metabolism, causing significant yield losses to cassava crops. Crop yield depends on diel rhythms, influencing carbon allocation and growth, and sugar signaling also impacting light-dark rhythms. This study aimed to elucidate the early impact of CsCMV infection on diel carbon allocation, metabolism, and defense mechanisms in both source and sink cassava leaves before storage root bulking. Soluble sugar and starch concentrations were examined over a 24-h cycle (16:8 photoperiod) in CsCMV-infected plants. The expression of an array of genes-carbohydrate metabolism, SnRK1 activity marker, defense, circadian marker-was analyzed at ZT6, ZT16 and ZT24/ZT0. In CsCMV-infected source leaves, at ZT6, sucrose increased whereas glucose, fructose and sucrose rose at night. An increase in Suc:hexose ratio and upregulation of SnRK1 activity marker genes and PR1 transcripts were found in infected leaves, suggesting a combination of altered carbon metabolism and defense response mechanisms against the viral infection. GIGANTEA, a clock-controlled gene, showed a reduced expression in infected leaves at ZT6 and ZT24/ZT0, suggesting a circadian phase shift compared with uninfected control plants. Additionally, starch mobilization transcripts were downregulated at ZT24/ZT0, though starch content remained unchanged during the 24-h cycle. In sink leaves, a transient peak of maltose (ZT6) was observed. Our findings suggest that CsCMV disrupts the plant's natural rhythms of sugar metabolism and allocation. Spikes in sucrose levels may serve as infection signals in the internal daily clock of the plant, influencing plant responses during the cassava-CsCMV interaction.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation of viable hypomorphic and null mutant plants via CRISPR-Cas9 targeting mRNA splicing sites.","authors":"Mika Yoshimura, Takashi Ishida","doi":"10.1007/s10265-024-01597-2","DOIUrl":"https://doi.org/10.1007/s10265-024-01597-2","url":null,"abstract":"<p><p>Genetic analysis is important for modern plant molecular biology, and in this regard, the existence of specific mutants is crucial. While genome editing technologies, particularly CRISPR-Cas9, have revolutionized plant molecular biology by enabling precise gene disruption, knockout methods are ineffective for lethal genes, necessitating alternatives like gene knockdown. This study demonstrates the practical generation of a hypomorphic mutant allele, alongside severe null mutant alleles, via the targeting of mRNA splicing sites using CRISPR-Cas9. The Arabidopsis HIGH PLOIDY 2 (HPY2) encodes a yeast NSE2 ortholog, part of the conserved eukaryotic SMC5/6 complex, with SUMO E3 ligase activity essential for cell cycle progression and plant development. Loss-of-function HPY2 mutants exhibit severe dwarfism and seedling lethality, making functional analysis challenging. To overcome these limitations, we created HPY2 knockdown mutants as novel tools to investigate gene function. Of the three mutant alleles, the hpy2-cr1 and hpy2-cr2 mutants resembled the existing severe hpy2-1 allele, both harboring a single base pair insertion in one exon, causing significant root shortening and seedling lethality. In contrast, the hypomorphic mutant hpy2-cr3, which has a five bp deletion at an intron-exon junction, showed relatively longer root growth and survived until the reproductive stage. RT-PCR analysis of hpy2-cr3 revealed atypical mRNAs producing truncated polypeptides that retained some HPY2 function, explaining the milder phenotype. These results establish the successful generation of novel hypomorphic mutant alleles critical for studying the lethal gene HPY2, and demonstrate the usefulness of CRISPR-Cas9 for producing viable hypomorphic mutants for investigating complex genetic interactions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Talvanis Lorenzetti Freire, Jefferson F de Oliveira, José Fernando A Baumgratz, Massimo G Bovini, Karen L G De Toni
{"title":"Secretory pedicels? Development, morphology, and histochemistry of articulated pedicels in Neotropical Malveae (Malvaceae).","authors":"Talvanis Lorenzetti Freire, Jefferson F de Oliveira, José Fernando A Baumgratz, Massimo G Bovini, Karen L G De Toni","doi":"10.1007/s10265-024-01592-7","DOIUrl":"https://doi.org/10.1007/s10265-024-01592-7","url":null,"abstract":"<p><p>In the Malveae tribe (Malvaceae), the axis supporting the flower has a joint at the upper third. This axis can be considered as an articulated pedicel, peduncle, peduncle-pedicel, or anthopodium. Such disparity in terminology reveals a duality in interpretation since this structure is classified as part of the inflorescence or part of the flower. In an effort to reach a consensus, this study aims to evaluate axes supporting the flowers of species from the Malveae tribe through ontogenetic, morphological, and histochemical analyses, using light microscopy and scanning electron microscopy. Ontogenetic analyses indicated that the axis supporting the flower is an articulated pedicel, which is divided into proximal and distal parts owing to the presence of the constriction (joint). Simultaneously, the articulated pedicel arises from the floral meristem, along with the establishment of the calyx and androecium. As development progresses, we observed frequent abscissions of the floral bud, along with the distal portion of the pedicel, at the joint. After this, the remaining proximal portion of the pedicel becomes secretory, as an extrafloral nectary, often foraged by ants of the genus Wasmannia. Thus, this ontogenetic analysis of the articulated pedicel helps in understanding its functionality and morphological variability, highlighting the importance of standardized terminology since it would lead to conceptual clarity in different studies. Additionally, this study, for the first time, reveals the presence of extrafloral nectaries on articulated pedicels in Malveae, a previously undocumented feature in Malveae and Malvaceae.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative transcriptome reveals lignin biosynthesis being the key molecular pathway regulating oilseed rape growth treated by SiO<sub>2</sub> NPs and biochar.","authors":"Ziming Wang, Ziyue Wang, Zhaodi Zhang, Qiong Lu, Yikun Sheng, Xiangyuan Song, Ruipeng Huo, Juyuan Wang, Sheng Zhai","doi":"10.1007/s10265-024-01590-9","DOIUrl":"https://doi.org/10.1007/s10265-024-01590-9","url":null,"abstract":"<p><p>Biochar and SiO<sub>2</sub> NPs are effective soil conditioners, but the impacts and mechanisms of combined application in oilseed rape are not yet clear. Therefore, an experiment was designed to investigate oilseed rape growth, physiological indexes, and transcriptome sequencing under four treatments: control (CK), Platanus orientalis L. leaf biochar (B), SiO<sub>2</sub> NPs (S), and BS. Our results showed that B, S and BS treatments all promoted the root growth, root activity and biomass of oilseed rape, especially the root length and fresh weight in BS, which were increased by 77.48% and 279.07%, respectively. Moreover, the three-dimensional fluorescence spectra of B and BS were similar, and the tyrosine-like substance proportion in B, S and BS increased from 7.8 to 9.4%, 10.2% and 19.5%, respectively. In transcriptome analysis, there were 10,280 differentially expressed genes (DEGs) shared in B and BS, 3431 DEGs shared in S and BS, and 2815 DEGs shared in B, S and BS. We also found that B, S and BS all regulated oilseed rape growth by inducing the lignin biosynthesis and the relevant genes encoding BBE-like, BGL, UDP in the phenylpropanoid biosynthesis pathway. The results provide gene regulation associated with the phenylpropanoid biosynthesis applying the biochar and SiO<sub>2</sub> NPs, which can be used to increase biomass.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New insights into the evolution and function of the UMAMIT (USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER) gene family.","authors":"Chenhao Cao, Xinbao Qiu, Zhongnan Yang, Yue Jin","doi":"10.1007/s10265-024-01596-3","DOIUrl":"https://doi.org/10.1007/s10265-024-01596-3","url":null,"abstract":"<p><p>UMAMIT proteins have been known as key players in amino acid transport. In Arabidopsis, functions of several UMAMITs have been characterized, but their precise mechanism, evolutionary history and functional divergence remain elusive. In this study, we conducted phylogenetic analysis of the UMAMIT gene family across key species in the evolutionary history of plants, ranging from algae to angiosperms. Our findings indicate that UMAMIT proteins underwent a substantial expansion from algae to angiosperms, accompanied by the stabilization of the EamA (the main domain of UMAMIT) structure. Phylogenetic studies suggest that UMAMITs may have originated from green algae and be divided into four subfamilies. These proteins first diversified in bryophytes and subsequently experienced gene duplication events in seed plants. Subfamily I was potentially associated with amino acid transport in seeds. Regarding subcellular localization, UMAMITs were predominantly localized in the plasma membrane and chloroplasts. However, members from clade 8 in subfamily III exhibited specific localization in the tonoplast. These members may have multiple functions, such as plant disease resistance and root development. Furthermore, our protein structure prediction revealed that the four-helix bundle motif is crucial in controlling the UMAMIT switch for exporting amino acid. We hypothesize that the specific amino acids in the amino acid binding region determine the type of amino acids being transported. Additionally, subfamily II contains genes that are specifically expressed in reproductive organs and roots in angiosperms, suggesting neofunctionalization. Our study highlights the evolutionary complexity of UMAMITs and underscores their crucial role in the adaptation and diversification of seed plants.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toshihiro Watanabe, Nozomi Imai, Syuntaro Hiradate, Hayato Maruyama, Jun Wasaki
{"title":"Why can Palhinhaea cernua (lycophyte) grow closer to fumaroles in highly acidic solfatara fields?","authors":"Toshihiro Watanabe, Nozomi Imai, Syuntaro Hiradate, Hayato Maruyama, Jun Wasaki","doi":"10.1007/s10265-024-01587-4","DOIUrl":"https://doi.org/10.1007/s10265-024-01587-4","url":null,"abstract":"<p><p>Palhinhaea cernua, a lycophyte, and Dicranopteris linearis, a fern, are commonly observed in solfatara fields in Kyushu, Japan, but their distribution trends are different. The aim of this study was to determine why P. cernua is more abundant in areas closer to fumaroles from both a soil and plant perspective. Samples of P. cernua and D. linearis, as well as their respective growing soils, were collected, and the mineral properties, including the concentration of various mineral elements and inorganic anions and δ<sup>15</sup>N, were determined. P. cernua was better adapted to soil with lower pH, higher soluble aluminum concentrations, and poorer calcium and phosphorus concentrations than D. linearis. A positive correlation was observed between shoot nitrogen concentration and both shoot sulfur concentration and soil water-soluble sulfur concentration in P. cernua, implying the involvement of sulfur in nitrogen acquisition in P. cernua. The results also suggested that D. linearis mainly uses soil NO<sub>3</sub>-N, while P. cernua uses NH<sub>4</sub>-N, which is predominant and excessive in the solfatara fields, particularly near the fumaroles. This high preference for NH<sub>4</sub>-N in P. cernua was confirmed through a cultivation experiment. While D. linearis prefers NO<sub>3</sub>-N and distributes further from fumaroles, P. cernua may have survived in the solfatara fields by utilizing NH<sub>4</sub>-N and sulfur, which are abundant near fumaroles where competition from other plant species is minimal.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Yuan, Jingzhi Wang, Rong Liu, Yuqi Tang, Di Wu, Ri Jin, Weihong Zhu
{"title":"Soil properties, climate, and topography jointly determine plant community characteristics in marsh wetlands.","authors":"Lin Yuan, Jingzhi Wang, Rong Liu, Yuqi Tang, Di Wu, Ri Jin, Weihong Zhu","doi":"10.1007/s10265-024-01593-6","DOIUrl":"https://doi.org/10.1007/s10265-024-01593-6","url":null,"abstract":"<p><p>Various environmental conditions influence the characteristics of plant communities within wetlands. Although the influence of key environmental factors on plant community traits within specific types of wetland ecosystems has been studied extensively, how they regulate plant communities across marsh wetland types remains poorly understood. We examined how environmental conditions influence plant communities in marsh wetlands along the lower Tumen River in northeastern China. We collected and analyzed data on the plant community characteristics (species, height, and coverage), soil physicochemical properties (organic carbon, inorganic nitrogen, and sulfur), and climatic and topographic factors (temperature, precipitation, and elevation) of 56 distinct marsh plots (29 herbaceous, 14 shrub, and 13 forested marshes) to understand how these variables correlate with plant community characteristics across marsh types. The wetland plant diversity varied, with the lowest, intermediate, and highest diversity occurring in herbaceous, shrub, and forested marshes, respectively. Climate, topography, and soil properties had crucial influences on plant diversity and biomass. Structural equation modeling showed that, in herbaceous marshes, plant biomass was primarily determined by soil and plant diversity, with climate exerting an indirect effect. In shrub marshes, soil, climate, and plant diversity directly influenced biomass. In forest marshes, soil and plant diversity directly affected biomass, whereas climate and topography had indirect effects. These findings highlight the complex interactions among environmental factors across marsh ecosystems and their influence mechanisms on biomass, aiding in formulating effective conservation and restoration strategies for marsh wetland ecosystems.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical genetics analysis suggests the involvement of Aurora kinase and MAPKs in aluminum-induced malate secretion in Arabidopsis.","authors":"Liujie Wu, Liuying Lai, Weijun Wu, Yongzhuang Wang, Ganhui Mo, Yuriko Kobayashi, Naohisa Ogo, Hiroyuki Koyama","doi":"10.1007/s10265-024-01594-5","DOIUrl":"https://doi.org/10.1007/s10265-024-01594-5","url":null,"abstract":"<p><p>Chemical genetics is a multidisciplinary research method. In this study, it is used to screen compounds that promote aluminum-induced malate secretion in Arabidopsis thaliana. Inhibition of p38 mitogen-activated protein kinase (p38 MAPK; LY2228820) significantly increased the transcription of Arabidopsis thaliana aluminum-activated malate transporter 1 (AtALMT1) and sensitive to proton rhizotoxicity 1 (STOP1)-regulated genes, multidrug and toxic compound extrusion and aluminum sensitive 3, but not AtSTOP1 and the Al-biomarker genes At3g28510, At5g13320, suggesting that LY2228820 increased the early expression of STOP1-regulated genes without affecting AtSTOP1 expression. Inhibition of p38 MAPK (LY2228820) and Aurora A (MLN8237) increased aluminum-activated malate transport via AtALMT1, suggesting that both MLN8237 and LY2228820 interfere with AtALMT1 activity. An increase in root elongation was also observed in Arabidopsis after applying compounds LY2228820 and MLN8237. Thus, both LY2228820 and MLN8237 may play important roles in alleviating the inhibitory effects of aluminum on roots.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}