Journal of Plant Research最新文献

筛选
英文 中文
Needle/electrode insertion device for measuring plant electrical signals.
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-04 DOI: 10.1007/s10265-025-01625-9
Miguel Ángel García Servín, Amanda Kim Rico Chávez, Magdalena Mendoza Sánchez, José Alfredo Acuña García, Ramón Gerardo Guevara González, Luis Miguel Contreras Medina
{"title":"Needle/electrode insertion device for measuring plant electrical signals.","authors":"Miguel Ángel García Servín, Amanda Kim Rico Chávez, Magdalena Mendoza Sánchez, José Alfredo Acuña García, Ramón Gerardo Guevara González, Luis Miguel Contreras Medina","doi":"10.1007/s10265-025-01625-9","DOIUrl":"https://doi.org/10.1007/s10265-025-01625-9","url":null,"abstract":"<p><p>Plants generate electrical signals in response to mild and severe environmental stimuli to transmit physiological information and ultimately trigger defensive responses during stressful events. It has been proposed that detecting and characterizing such signals could allow researchers to mimic specific electrical stimuli and provoke desirable responses in crops. Nevertheless, manually inserting electrodes in plant tissues leads to irregular data records due to a lack of uniformity across insertion events. For this reason, we manufactured a prototype of an electrode/needle insertion device built in aluminum and acrylic and used it to measure electrical signals in C. annuum plants. As a result, the device had more consistent insertion characteristics such as depth and alignment between electrodes and with plant stems. The device was also used to obtain electrical signals and compare them with the signals obtained using the traditional insertion technique, demonstrating that the use of the device promotes stability and repeatability in the captured signals.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Devastating impact of the seed-feeding fly Japanagromyza tokunagai on the endangered orchid Cephalanthera falcata.
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-03 DOI: 10.1007/s10265-025-01623-x
Kenji Suetsugu, Rikiya Kurashige, Shigeki Fukushima
{"title":"Devastating impact of the seed-feeding fly Japanagromyza tokunagai on the endangered orchid Cephalanthera falcata.","authors":"Kenji Suetsugu, Rikiya Kurashige, Shigeki Fukushima","doi":"10.1007/s10265-025-01623-x","DOIUrl":"https://doi.org/10.1007/s10265-025-01623-x","url":null,"abstract":"<p><p>Numerous studies have examined the reproductive systems of threatened orchids to develop effective conservation strategies. However, the detrimental effects of seed predators on seed production are often overlooked. In this study, we evaluated the impact of the seed-parasitic fly Japanagromyza tokunagai on the seed production of the endangered orchid Cephalanthera falcata, based on observations from five locations over one year and from a single location over four years in Chiba Prefecture, Japan. Our findings showed that J. tokunagai caused 100% capsule damage across all sites and years examined. Although some infested fruits still produced seeds in certain locations and years, the quantities were very low. Consequently, we observed a 99.1-100% reduction in seed production across all populations investigated. These results suggest that reduced seed production could limit generational turnover, potentially threatening the reproductive success and long-term survival of C. falcata, at least in the populations studied. This highlights the need to mitigate the negative impact of J. tokunagai on seed production in C. falcata. Combining artificial pollination with the bagging of individual inflorescences could be an effective approach, capable of increasing seed production by more than 100-fold. Given the fungal dependence and low germination rates of C. falcata, future work should also examine seedling recruitment to better understand the impacts of seed loss and improve estimates of long-term resilience.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143542346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlorophyll fluorescence responses to CO2 availability reveal crassulacean acid metabolism in epiphytic orchids. 叶绿素荧光对CO2有效性的响应揭示了附生兰花的天冬酰胺酸代谢。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2024-12-24 DOI: 10.1007/s10265-024-01608-2
Sae Bekki, Kenji Suetsugu, Koichi Kobayashi
{"title":"Chlorophyll fluorescence responses to CO<sub>2</sub> availability reveal crassulacean acid metabolism in epiphytic orchids.","authors":"Sae Bekki, Kenji Suetsugu, Koichi Kobayashi","doi":"10.1007/s10265-024-01608-2","DOIUrl":"10.1007/s10265-024-01608-2","url":null,"abstract":"<p><p>Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO<sub>2</sub> and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO<sub>2</sub> elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids. In CAM-performing Kalanchoe species, the effective quantum yield of photosystem II showed no change in response to CO<sub>2</sub> elimination during the daytime but decreased with CO<sub>2</sub> elimination at dusk. We applied this method to reveal the photosynthetic mode of epiphytic orchids and found that Gastrochilus japonicus, Oberonia japonica, and Bulbophyllum inconspicuum, but not B. drymoglossum, are constitutive CAM plants, which were also confirmed by malate determination. Our data propose a novel approach to identify and characterize CAM plants without labor-intensive experimental procedures. Although B. drymoglossum leaves had relatively high malate content, they did not depend on it to perform photosynthesis even under water-deficient or increased light conditions. Anatomical comparisons revealed a notable difference in leaf structure between B. drymoglossum and B. inconspicuum; B. drymoglossum leaves possess large water storage tissue internally, unlike B. inconspicuum leaves, which develop pseudobulbs. Our findings suggest different evolutionary adaptations to water deficit between closely related B. drymoglossum and B. inconspicuum.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"323-336"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of alkane and membrane lipid alteration in Synechococcus elongatus PCC 7942 under salt and light stresses. 盐和光胁迫下长聚球菌PCC 7942中烷烃和膜脂改变的协同效应
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2024-12-31 DOI: 10.1007/s10265-024-01613-5
Arif Agung Wibowo, Koichiro Awai
{"title":"Synergistic effect of alkane and membrane lipid alteration in Synechococcus elongatus PCC 7942 under salt and light stresses.","authors":"Arif Agung Wibowo, Koichiro Awai","doi":"10.1007/s10265-024-01613-5","DOIUrl":"10.1007/s10265-024-01613-5","url":null,"abstract":"<p><p>Salinity and light markedly influence cyanobacterial viability. High salinity disrupts the osmotic balance, while excess light energy affects redox potential in the cells. Regulating the ratio of saturated and unsaturated alka(e)ne and fatty acids in cyanobacteria is thought to have crucial roles in coping with these stresses by regulating membrane fluidity. In Synechococcus elongatus PCC 7942 (Syn7942), alkane is produced from fatty acid metabolites using acyl-acyl carrier protein reductase (Aar) and aldehyde-deformylating oxygenase (Ado) enzymes. However, the role of alka(e)nes and their correlation with fatty acid-related compounds, especially under salinity stress, is not yet fully understood. This study explored the significance of the natural alka(e)ne biosynthesis pathway using Syn7942. The role of alka(e)ne was assessed using single and double knockout mutants of the aar and/or ado genes in this biosynthetic process. The alka(e)ne levels and membrane lipid content exhibited an inverse relationship, correlating with cell fluidity under high-salinity and high-light conditions. The absence of alka(e)ne resulted in a severe growth phenotype of Δado and Δaar/Δado under high-salinity conditions and less severe under high-light conditions. In addition, feeding with C15:0 and/or C17:0 alkanes complemented the growth phenotype with different accumulation profiles. The Δaar mutant exhibited higher resistance to high salinity than the Syn7942 WT, indicating the importance of Ado for survival at high salinity. Overall, lipid-related compounds, especially alka(e)nes, markedly contribute to cell integrity maintenance under high-salinity conditions by regulating membrane rigidity and fluidity.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"365-376"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal changes in pigment content in overwintering and current-year leaves of Sasa senanensis from snowmelt to before leaf-fall of canopy deciduous trees. 雪融雪期至冠层落叶树落叶前雪沙越冬叶和年叶色素含量的季节变化
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2024-12-17 DOI: 10.1007/s10265-024-01607-3
Kiyomi Ono, Megumi Hashiguchi, Ryouichi Tanaka, Toshihiko Hara
{"title":"Seasonal changes in pigment content in overwintering and current-year leaves of Sasa senanensis from snowmelt to before leaf-fall of canopy deciduous trees.","authors":"Kiyomi Ono, Megumi Hashiguchi, Ryouichi Tanaka, Toshihiko Hara","doi":"10.1007/s10265-024-01607-3","DOIUrl":"10.1007/s10265-024-01607-3","url":null,"abstract":"<p><p>Sasa senanensis (a dwarf bamboo), an evergreen herbaceous plant native to the cool temperate regions of eastern Asia, endures seasonal temperature fluctuations and significant variations in light intensity typical for understory plants. Following snowmelt in early spring, the light intensity received by Sasa leaves surges, then diminishes as the canopy of upper deciduous trees develops. The current-year leaves of S. senanensis unfold under these shaded conditions, rendering the preservation of overwintering leaves vital for maintaining photosynthetic productivity in early spring. This study investigated the adaptations of overwintering leaves of S. senanensis to the low temperatures and elevated light conditions typical of early spring, examining whether these leaves dissipate absorbed light energy as heat and/or reduce their antenna size in response to increased light levels. Comprehensive analyses of Fv/Fm and photosynthetic pigment compositions were conducted throughout the spring to autumn seasons from 2014 to 2017. Our results indicate that Fv/Fm in overwintering leaves was initially low in early spring but increased gradually before the onset of shading, maintaining high levels under shaded conditions across all examined years. The chlorophyll a/b ratio increased post-snowmelt and decreased with intensified shading annually, with the exception of 2015, suggesting that reductions in antenna size are not essential for Fv/Fm recovery. Furthermore, the quantities and de-epoxidation state of xanthophyll cycle pigments increased after snowmelt despite rising temperatures, then decreased with progressive shading each year, indicating that overwintering leaves adapt to early spring conditions by modulating their xanthophyll cycle pigments. This study demonstrates that the overwintering leaves of S. senanensis exhibit a flexible response in photosystem pigments to variations in the light environment.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"215-230"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142835904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of ultra-weak photon emission imaging in plant stress assessment. 超弱光子发射成像在植物胁迫评估中的应用。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2025-01-05 DOI: 10.1007/s10265-024-01600-w
Ankush Prasad, Eliška Mihačová, Renuka Ramalingam Manoharan, Pavel Pospíšil
{"title":"Application of ultra-weak photon emission imaging in plant stress assessment.","authors":"Ankush Prasad, Eliška Mihačová, Renuka Ramalingam Manoharan, Pavel Pospíšil","doi":"10.1007/s10265-024-01600-w","DOIUrl":"10.1007/s10265-024-01600-w","url":null,"abstract":"<p><p>The oxidative damage induced by abiotic stress factors such as salinity, drought, extreme temperatures, heavy metals, pollution, and high irradiance has been studied in Arabidopsis thaliana. Ultra-weak photon emission (UPE) is presented as a signature reflecting the extent of the oxidation process and/or damage. It can be used to predict the physiological state and general health of plants. This study presents an overview of a potential research platform where the technique can be applied. The results presented can aid in providing invaluable information for developing strategies to mitigate abiotic stress in crops by improving plant breeding programs with a focus on enhancing tolerance. This study evaluates the applicability of charged couple device (CCD) imaging in evaluating plant stress and degree of damage and to discuss the advantages and limitations of the claimed non-invasive label-free tool.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"389-400"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATML1 and PDF2 regulate cuticle formation and protect the plant body from environmental stresses in Arabidopsis thaliana seedlings. ATML1和PDF2调控拟南芥幼苗角质层形成,保护植物体免受环境胁迫。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2024-12-10 DOI: 10.1007/s10265-024-01604-6
Kenji Nagata, Ichiro Maekawa, Taku Takahashi, Mitsutomo Abe
{"title":"ATML1 and PDF2 regulate cuticle formation and protect the plant body from environmental stresses in Arabidopsis thaliana seedlings.","authors":"Kenji Nagata, Ichiro Maekawa, Taku Takahashi, Mitsutomo Abe","doi":"10.1007/s10265-024-01604-6","DOIUrl":"10.1007/s10265-024-01604-6","url":null,"abstract":"<p><p>A sessile lifestyle compels plants to endure an array of environmental stressors in the location where they grow. To cope with environmental stresses, plants have developed specialized cell wall structures called cuticles at the interface between the plant and the environment. In Arabidopsis thaliana seedlings, cuticles cover and protect aerial organs and young roots. However, the precise assembly of the molecular machinery required for cuticle formation on the surface of distinct organs that exhibit entirely different functions and developmental contexts remains unknown. Here, we demonstrate that a paralogous gene pair, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2), regulates precise cuticle formation in Arabidopsis thaliana seedlings. We found that the expression of ATML1 and PDF2 spatially overlapped with cuticle deposition in Arabidopsis thaliana seedlings. Furthermore, the loss of ATML1 and PDF2 activity resulted in a significant downregulation of the expression of genes required for cuticle formation and compromised cuticle formation in different organs. Seedlings with impaired activities of ATML1 and PDF2 exhibited higher susceptibility to environmental stress. In particular, PDF2 plays a predominant role in tolerance to environmental stress rather than ATML1 in the roots. Collectively, our study provides new insights into the regulatory mechanisms of cuticle formation and the developmental strategies plants use to protect their bodies from environmental stresses.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"303-313"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Floral developmental insights into two species of Erythrina (Fabaceae: Papilionoideae: Phaseoleae) pollinated by hummingbirds and passerines. 由蜂鸟和雀形目传粉的两种丹参(豆科:凤蝶科:菜花科)的花发育研究。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2024-12-27 DOI: 10.1007/s10265-024-01610-8
Lukas Gabriel Macedo Pessanha de Souza, Marcus José de Azevedo Falcão, João Paulo Basso-Alves, Vidal de Freitas Mansano
{"title":"Floral developmental insights into two species of Erythrina (Fabaceae: Papilionoideae: Phaseoleae) pollinated by hummingbirds and passerines.","authors":"Lukas Gabriel Macedo Pessanha de Souza, Marcus José de Azevedo Falcão, João Paulo Basso-Alves, Vidal de Freitas Mansano","doi":"10.1007/s10265-024-01610-8","DOIUrl":"10.1007/s10265-024-01610-8","url":null,"abstract":"<p><p>Erythrina is a Pantropical bird-pollinated genus of Fabaceae. Thus, its flowers are usually large, showy, red or yellowish, offering nectar as the principal resource. There are two main interaction systems with birds in Erythrina: in one, the inflorescences are erect and the flowers are horizontal, offering no landing platform; in the other, the inflorescences are horizontal and the flower parts are more exposed. Erythrina speciosa is pollinated by hummingbirds and E. poeppigiana is pollinated by passerines. Despite their structural variation, little is known about how species of the same genus diverge ontogenetically to form flowers adapted to pollinators with different beak morphology and feeding behaviors. Therefore, this study aimed to investigate floral development in two species according to their pollination system. Flowers and buds were collected and fixed for analysis using scanning electron microscopy and light microscopy. Some characteristics are common to both species: the formation of a pseudoracemose inflorescence, the unidirectional emergence of floral organs, and the formation of a short staminal sheath involving nine of the ten stamens (diadelphous androecium). Other characteristics, notably those related to the late stages of floral development, gradually diverged. Among them are inflorescence formation pattern; the formation of reduced and free keel petals in E. speciosa, while in E. poeppigiana they are longer and postgenitally united by their lower margins; and the participation of the standard in the floral display. The studied species share several traits common to other Papilionoideae, but some similarities between the species studied may not be phylogenetically related and reveal the potential ontogenetic pathways of functional convergence that flowers have experienced throughout evolution in the genus.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"253-272"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pregnane derivatives in wheat (Triticum aestivum) and their potential role in generative development.
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2025-02-04 DOI: 10.1007/s10265-024-01614-4
Anna Janeczko, Jana Oklestkova, Barbara Jurczyk, Barbara Drygaś
{"title":"Pregnane derivatives in wheat (Triticum aestivum) and their potential role in generative development.","authors":"Anna Janeczko, Jana Oklestkova, Barbara Jurczyk, Barbara Drygaś","doi":"10.1007/s10265-024-01614-4","DOIUrl":"10.1007/s10265-024-01614-4","url":null,"abstract":"<p><p>Pregnane derivatives such as pregnenolone or progesterone and many other metabolites are important in mammals where many of them act as hormones including sexual hormones. Much less is known about the presence and functions of pregnane derivatives in plants. The main objectives of this work were (1) to determine the presence of pregnane derivatives in winter wheat (2) verify if there are changes of concentration of pregnane derivatives during wheat growth/development with special attention to vernalisation process (3) to answer the question of whether selected pregnane derivatives are stimulators of wheat development and whether the potential stimulation of this development is accompanied by the expression of the Vrn1 (Vernalisation1) gene. To the best of our knowledge, this is the first report that demonstrates the presence of pregnenolone and 5α-dihydroprogesterone in the leaves and intact crowns of winter wheat. The levels of some of the pregnane derivatives changed during plant growth/development, it was demonstrated that pregnenolone, pregnanolone and 17α-hydroxypregnenolone stimulated wheat development. The changes in the Vrn1 expression are discussed in light of the stimulation of generative development by the pregnane derivatives.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"377-388"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated metabolomic and transcriptomic strategies to reveal adaptive mechanisms in barley plant during germination stage under waterlogging stress.
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2025-01-26 DOI: 10.1007/s10265-025-01616-w
Haiye Luan, Jiajia Gao, Yu Li, Xin Qu, Jinghan Yang, Xin Qian, Meng Xu, Miao Sun, Xiao Xu, Huiquan Shen, Yinghu Zhang, Gongneng Feng
{"title":"Integrated metabolomic and transcriptomic strategies to reveal adaptive mechanisms in barley plant during germination stage under waterlogging stress.","authors":"Haiye Luan, Jiajia Gao, Yu Li, Xin Qu, Jinghan Yang, Xin Qian, Meng Xu, Miao Sun, Xiao Xu, Huiquan Shen, Yinghu Zhang, Gongneng Feng","doi":"10.1007/s10265-025-01616-w","DOIUrl":"10.1007/s10265-025-01616-w","url":null,"abstract":"<p><p>Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley. Seed germination plays a critical role in the establishment of seedlings and is significantly impacted by the presence of waterlogging stress. However, there is a limited understanding of the regulatory mechanisms of gene expression and metabolic processes in barley during the germination stage under waterlogging stress. This study aimed to investigate the metabolome and transcriptome responses in germinating barley seeds under waterlogging stress. The findings of the study revealed that waterlogging stress sharply decreased seed germination rate and seedling growth. The tolerant genotype (LLZDM) exhibited higher levels of antioxidase activities and lower malondialdehyde (MDA) content in comparison to the sensitive genotype (NN). In addition, waterlogging induced 86 and 85 differentially expressed metabolites (DEMs) in LLZDM and NN, respectively. Concurrently, transcriptome analysis identified 1776 and 839 differentially expressed genes (DEGs) in LLZDM and NN, respectively. Notably, the expression of genes associated with redox reactions, hormone regulation, and other biological processes were altered in response to waterlogging stress. Furthermore, the integrated transcriptomic and metabolomic analyses revealed that the DEGs and DEMs implicated in mitigating waterlogging stress primarily pertained to the regulation of pyruvate metabolism and flavonoid biosynthesis. Moreover, waterlogging might promote flavonoid biosynthesis by regulating 15 flavonoid-related genes and 10 metabolites. The present research provides deeper insights into the overall understanding of waterlogging-tolerant mechanisms in barley during the germination process.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"289-302"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信