{"title":"Androecium homologies in eight-staminate maples: a developmental study.","authors":"Alexander E Zavialov, Margarita V Remizowa","doi":"10.1007/s10265-025-01641-9","DOIUrl":null,"url":null,"abstract":"<p><p>The genus Acer belongs to the family Sapindaceae, whose representatives are characterized by a pentamerous perianth but typically possess only eight stamens. Such an androecium is believed to have evolved through the loss of two stamens. However, there is still no consensus on the origin of eight-staminate androecium including the positions of the two lost stamens and the pathway of their reduction compared to other Sapindaceae. We examined the early stages of flower development in five maple species belonging to different sections - four species with eight stamens and one species with ten stamens - using scanning electron microscopy. Measurements were performed to analyze the relative positions of stamen primordia, their size, and the floral meristem surface area. In addition, the perianth and androecium vasculature was studied to reveal petal-stamen complexes. We found that in three of four 8-staminate species, three stamens are initiated from common petal-stamen primordia, and five arise from single primordia. In A. tegmentosum Maxim., four stamens appear from common primordia with petals, and four from single primordia. Despite developmental differences, stamen distribution within the flower and the angles between adjacent stamens indicate a similar androecium construction in all species. In most species with eight stamens, the differences between two andoecial whorls have vanished. In contrast, A. nikoense (Miq.) Maxim., with ten stamens, possesses two distinct stamen whorls, the antepetalous stamens are initiated from common primordia. In the 8-staminate androecia of the genus Acer, the same two stamens have been lost as in other Sapindaceae. Within genus Acer, there is a certain decrease in the relative size of the floral meristem, accompanied by an increase in the number of common petal-stamen primordia and increased heterogeneity of the androecium (in A. tegmentosum) or reduction of some floral organs.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-025-01641-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The genus Acer belongs to the family Sapindaceae, whose representatives are characterized by a pentamerous perianth but typically possess only eight stamens. Such an androecium is believed to have evolved through the loss of two stamens. However, there is still no consensus on the origin of eight-staminate androecium including the positions of the two lost stamens and the pathway of their reduction compared to other Sapindaceae. We examined the early stages of flower development in five maple species belonging to different sections - four species with eight stamens and one species with ten stamens - using scanning electron microscopy. Measurements were performed to analyze the relative positions of stamen primordia, their size, and the floral meristem surface area. In addition, the perianth and androecium vasculature was studied to reveal petal-stamen complexes. We found that in three of four 8-staminate species, three stamens are initiated from common petal-stamen primordia, and five arise from single primordia. In A. tegmentosum Maxim., four stamens appear from common primordia with petals, and four from single primordia. Despite developmental differences, stamen distribution within the flower and the angles between adjacent stamens indicate a similar androecium construction in all species. In most species with eight stamens, the differences between two andoecial whorls have vanished. In contrast, A. nikoense (Miq.) Maxim., with ten stamens, possesses two distinct stamen whorls, the antepetalous stamens are initiated from common primordia. In the 8-staminate androecia of the genus Acer, the same two stamens have been lost as in other Sapindaceae. Within genus Acer, there is a certain decrease in the relative size of the floral meristem, accompanied by an increase in the number of common petal-stamen primordia and increased heterogeneity of the androecium (in A. tegmentosum) or reduction of some floral organs.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.