{"title":"Genetic structure of two oak species with different seed sizes in fragmented urban forests.","authors":"Lu Chen, Xingcheng Yue, Mengyao Shi, Wanqiu Lian, Hongmao Zhang, Hongyu Niu","doi":"10.1007/s10265-025-01660-6","DOIUrl":"https://doi.org/10.1007/s10265-025-01660-6","url":null,"abstract":"<p><p>Forest fragmentation induced by urbanization usually has a negative effect on gene flow by limiting animal-mediated seed dispersal. Since the effect of forest fragmentation on animal-induced seed dispersal is related to seed size, it is likely that the impact of such fragmentation on genetic structure varies among the species with different seed sizes. To test this prediction, we investigated the genetic diversity, structure and kinship structure of seedlings and adult trees in two different seed-sized oaks, Quercus variabilis and Quercus chenii, which are undergoing seed dispersal limitation in urban areas, e.g. Wuhan city, a rapidly urbanizing megacity in central China. Compared to the large-seeded oak Q. variabilis, more full-sibling and maternal-offspring pairs of the small-seeded oak Q. chenii were detected among and within forest patches, indicating small-seeded species was enduring less restricted seed-mediated gene flow than large-seeded species in urban areas. For both oaks, genetic differentiation of seedlings mainly occurred within populations instead of among populations, and more half-siblings than full-sibling pairs and more paternal-offspring than maternal-offspring pairs were observed. In addition, genetic diversity within forests was positively associated with population size. The results indicate frequent gene flow of oaks, mainly from wind pollination, exists among urban forest patches and then offsets the reductions of gene flow from seed dispersal. Our results suggest that wind-pollinated and animal-dispersal small-seeded species, might suffer from less limitation of gene flow in fragmented urban forests, thus they can be candidates for urban greening and planting. In addition, enhancing habitat connectivity and maintaining large populations are also essential to promote gene flow and preserve genetic diversity.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144731911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengqi Cui, Dongbo Shi, Momoko Yamaji, Kie Kumaishi, Yasunori Ichihashi, Ayako Kawamura, Keiko Sugimoto, Satoko Yoshida
{"title":"Integration of single nucleus RNA-seq and bulk RNA-seq reveals gene regulatory networks for vascular connection between parasitic plants and host plants.","authors":"Mengqi Cui, Dongbo Shi, Momoko Yamaji, Kie Kumaishi, Yasunori Ichihashi, Ayako Kawamura, Keiko Sugimoto, Satoko Yoshida","doi":"10.1007/s10265-025-01654-4","DOIUrl":"https://doi.org/10.1007/s10265-025-01654-4","url":null,"abstract":"<p><p>The facultative parasitic plant Phtheirospermum japonicum forms a specialized organ, the haustorium, to invade its host, Arabidopsis thaliana, establishing a vascular connection via the formation of a xylem bridge. This connection depends on coordinated interactions between the vascular systems of both plants, yet the molecular dynamics of these interactions within the haustorium and the host roots remain elusive. This study aimed to unravel the transcriptomic heterogeneity of haustoria and gene regulatory networks involved in this process by integrating single nucleus RNA sequencing (snRNA-seq) and bulk RNA sequencing (bulk RNA-seq). snRNA-seq identified a total of 7 P. japonicum cell clusters and 4 A. thaliana cell clusters, each with cluster-specific marker genes, allowing for a distinct characterization of vascular cells within the haustorium. Differential gene expression analyses revealed up-regulation of genes associated with xylem formation and auxin transport in both parasites and hosts, suggesting the presence of shared molecular mechanisms facilitating vascular connection. Further gene network analysis combining snRNA-seq and bulk RNA-seq identified conserved homologous genes across both species, indicating potential molecular interactions of vascular-related genes from hosts and parasites. Our study reveals the high heterogeneity of haustorium cells, characterizing the expression profiles of each cell type in haustoria and host roots during haustorium development at single-cell resolution. These findings provide insights into the molecular interactions between parasitic plants and hosts, presenting potential targets for disrupting these interactions to manage parasitic plant infestations in crops.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144540641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Over-compensation of the native herb Qiai (Artemisia argyi var. argyi cv. Qiai) to infection with alien field dodder (Cuscuta campestris).","authors":"Xin Yu, Tong Wu, Wei-Bin Wang, Tian-Yu Ma, Qiu-Yu Ma, Jia-Ying Zhang, Jia-Liang Zhang","doi":"10.1007/s10265-025-01639-3","DOIUrl":"10.1007/s10265-025-01639-3","url":null,"abstract":"<p><p>Compensatory growth of crops is argued to alleviate detrimental parasitic effects. Cuscuta campestris causes severe crop losses worldwide, and is the most important parasitic weed. In a two-year consecutive field investigation, C. campestris was found on Artemisia argyi var. argyi cv. Qiai, one traditional medicinal herb with a long cultivation history in Qizhou, China. In 2020, anatomical validation was conducted on haustorial connection, and competition between carbon (C) and nitrogen (N) in this parasitic system was quantified with isotope signature (δ<sup>13</sup>C, δ<sup>15</sup>N) at five sites in 2021. Across sites, leaf senescence of low canopy of infected Qiai was greatly accelerated. Enhancement of resource remobilization from aging leaves (emerging source) mainly supported growth of the parasite (additional sink) also host stem, Qiai successfully abstained intense resource competition with C. campetris, and both species had similar δ<sup>13</sup>C and δ<sup>15</sup>N. A new source-sink balance re-established between the parasite and host. Infected Qiai held relatively steady canopy C fixation (constant photosynthetic N use efficiency, biomass and N concentration of green leaves), and branched in top canopy markedly, increasing light access. Together, Qiai appeared to enhance canopy C gain in response to infection. Increase in δ<sup>13</sup>C in this parasite-host association was mild. Finally, this parasite evidently over-stimulated the aboveground biomass of its host, irrespective of infection density and load, and was left behind. This study first reported C. campestris on Qiai, and the latter species execute over-compensation in the field.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"575-586"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143998063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Tadeu Teodoro da Cruz, Gabriela Brito Costa, Nayara Magry Jesus Melo, Javier Guido Puntieri, João Paulo Souza
{"title":"Bud structure, time of budbreak and crown architecture in woody species from Cerrado and seasonal forests of Brazil.","authors":"Gabriel Tadeu Teodoro da Cruz, Gabriela Brito Costa, Nayara Magry Jesus Melo, Javier Guido Puntieri, João Paulo Souza","doi":"10.1007/s10265-025-01642-8","DOIUrl":"10.1007/s10265-025-01642-8","url":null,"abstract":"<p><p>Different light intensities in cerrado stricto sensu (CSS) and semideciduous seasonal forests (SSF) can result in distinct morphological responses among woody species. This research evaluated the size and bud composition, budbreak time, and crown architecture of woody species in response to precipitation and varying light intensities in these two environments. The study was conducted in CSS (19°57'29″ S and 44°25'29″ W) and an SSF fragment (19°53'84″ S and 44°25'56″ W) in Minas Gerais, Brazil. The research focused on four species: Miconia albicans and Xylopia aromatica, which occur in both environments, as well as Bauhinia cfr. ungulata (CSS) and B. cfr. rufa (SSF). Shoots from the main axis were manually dissected, and budbreak times were recorded. Crown architecture was evaluated based on diagrams of the vegetative above-ground structure, excluding leaves. Light intensities was measured with a luxmeter at the crown's apex, interior, and base. Shoots were larger and had more preformed organs in CSS than in SSF trees. Trichomes were observed on shoots of all CSS and SSF trees. The number of cataphylls varied: B. cfr. ungulata had one, B. cfr. rufa had 1-3, while compound buds of X. aromatica averaged 5.4 in CSS and 3.7 in SSF. Simple buds of X. aromatica and all M. albicans buds lacked cataphylls. Budbreak occurred in September for M. albicans (CSS and SSF), October for B. cfr. ungulata, Juy-October for X. aromatica and August-October for B. cfr. rufa. A positive correlation between budbreak and rainfall was recorded only for B. cfr. ungulata. Despite differences in bud size and composition between environment, these didn't result in distinct crown architectures. The findings highlight that tropical woody species with cataphyll-protected buds are as common as in temperate regions. Further research is needed to explore phylogenetic traits and the ecological role of cataphylls in tropical species.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"587-601"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144020971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abscisic acid enhances non-photochemical quenching through SnRK2 and ABI3 in Physcomitrium patens.","authors":"Chang-Hyun Maeng, Takuya Fujita, Junko Kishimoto, Ryouichi Tanaka, Atsushi Takabayashi, Tomomichi Fujita","doi":"10.1007/s10265-025-01627-7","DOIUrl":"10.1007/s10265-025-01627-7","url":null,"abstract":"<p><p>The transition of plants in the green lineage from aquatic to terrestrial environments during the bryophyte stage marked a pivotal point in evolution. Successful terrestrialization required evolutionary adaptations to harsh and fluctuating light conditions, where direct irradiation is stronger than in aquatic environments. To cope with these challenges, plants evolved regulatory mechanisms to control cellular activities. One such acclimation is rapidly reversible, energy-dependent non-photochemical quenching (NPQ), which dissipates excess light energy as heat to protect the photosynthetic apparatus. Another critical innovation is abscisic acid (ABA) signaling, believed to have first emerged in bryophytes. Here, we reveal a potential link between these two key acclimations in bryophytes. We demonstrate that exogenous ABA induces NPQ in the moss Physcomitrium patens, increasing the levels of LHCSR, a key NPQ regulator, while concurrently decreasing PsbS. Exogenous ABA also enhances the xanthophyll cycle pigments, contributing to NPQ. In mutants deficient in ABA signaling components, including SNF1-related kinase 2 (SnRK2) and the transcription factor, Abscisic Acid-Insensitive 3 (ABI3), ABA-induced NPQ, LHCSR and PsbS expression, and xanthophyll cycle pigment accumulation were significantly reduced. These findings suggest that exogenous ABA enhances NPQ through the SnRK2 and ABI3-mediated signaling pathway by promoting LHCSR expression and xanthophyll cycle pigment production. We propose that the integration of ABA signaling and NPQ represent a critical evolutionary milestone, enabling early land plants to adapt and thrive in terrestrial environments.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"625-636"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tetracentron (Trochodendraceae) in the Paleocene and Miocene of western North America.","authors":"Steven R Manchester","doi":"10.1007/s10265-025-01636-6","DOIUrl":"10.1007/s10265-025-01636-6","url":null,"abstract":"<p><p>Although Tetracentron (Trochodendraceae) is endemic to eastern Asia today, the fossil record indicates that it was formerly more widespread across the northern hemisphere. Infructescences from the Paleocene of Wyoming, USA, documented herein, represent the oldest known occurrence of the genus. Details of the morphology, including spikes of sessile, tetracarpellate, apically dehiscent capsules with styles emerging from the lower part of the fruit, and a nectary bulge beneath each style, are revealed by micro-CT scanning of specimens preserved as molds and casts in siltstone. The discovery of Tetracentron linchensis sp. nov. indicates that Tetracentron and Trochodendron had already diverged by about 60 million years ago and were sympatric, along with the extinct relative, Eotrochion, in the Paleocene of Wyoming. North American fossil occurrences of Trochodendraceae, including extinct Eocene and Miocene genera, as well as both extant genera, highlight a former diversity and geographic spread that is no longer evident in the surviving Asian Trochodendraceae.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"555-561"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144013110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toshiki Wada, Ayako N Sakamoto, Masaaki Umeda, Naoki Takahashi
{"title":"SUPPRESOR OF GAMMA RESPONSE 1 promotes early onset of endoreplication upon DNA double-strand breaks by inducing CCS52A1 expression in Arabidopsis roots.","authors":"Toshiki Wada, Ayako N Sakamoto, Masaaki Umeda, Naoki Takahashi","doi":"10.1007/s10265-025-01630-y","DOIUrl":"10.1007/s10265-025-01630-y","url":null,"abstract":"<p><p>Living organisms are constantly at the risk of DNA damage caused by factors such as DNA replication errors, reactive oxygen species, and UV radiation. In plants, DNA damage activates the NAC-type transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) that governs DNA damage responses such as cell cycle arrest, stem cell death, and early onset of endoreplication. However, molecular mechanisms underlying the early induction of endoreplication onset in response to DNA damage remain elusive. In this study, we show that CELL CYCLE SWITCH 52 A1 (CCS52A1), an activator of the APC/C E3 ligase, plays a major role in the early onset of endoreplication in response to DNA double-strand breaks (DSBs) in Arabidopsis roots. Upon DSBs, SOG1 directly binds to the CCS52A1 locus, thereby inducing its expression. Moreover, early transition to endoreplication in response to DSBs is suppressed in ccs52a1 knockout roots. Our data propose that increased polyploidy may function as a unique adaptative mechanism to genotoxic stress in plants.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"679-693"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toshiki Wada, Ayako N Sakamoto, Masaaki Umeda, Naoki Takahashi
{"title":"Correction: SUPPRESOR OF GAMMA RESPONSE 1 promotes early onset of endoreplication upon DNA double-strand breaks by inducing CCS52A1 expression in Arabidopsis roots.","authors":"Toshiki Wada, Ayako N Sakamoto, Masaaki Umeda, Naoki Takahashi","doi":"10.1007/s10265-025-01647-3","DOIUrl":"10.1007/s10265-025-01647-3","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"695"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144216163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-radiative origin for alpine endemics of Draba (Brassicaceae) in the central mountains of the Japanese Archipelago.","authors":"Ryutaro Koda, Yoshinori Murai, Hajime Ikeda","doi":"10.1007/s10265-025-01643-7","DOIUrl":"10.1007/s10265-025-01643-7","url":null,"abstract":"<p><p>Diversity of endemic species may result from two evolutionary processes: in-situ diversification (radiation) or phylogenetically independent divergences (non-radiation). To explore the evolutionary history of endemic-rich alpine flora in the Japanese Archipelago, we investigated the phylogenetic relationships of four endemic taxa of Draba (Brassicaceae) from the high mountains of central Honshu: D. kitadakensis, D. sachalinensis var. shinanomontana, D. sakuraii var. nipponica, and D. shiroumana. Using molecular phylogenetic analyses on plastid trnL-F and nuclear ITS sequence of 157 taxa, we found that the four taxa endemic to central Honshu did not form a monophyletic group and diverged from at least two evolutionary independent lineages. Moreover, ancestral area reconstruction further revealed that some of their ancestral species may have originated from different geographical regions. These findings indicate that the endemic Draba in central Honshu diverged through non-radiative evolutionary origin. Our study suggests that the richness of endemic species in the alpine zone of the Japanese Archipelago is associated with multiple sources with high species diversity located in nearby geographical regions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"563-573"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144064100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of suppression of phosphate transporter 4;4 on CO<sub>2</sub> assimilation in rice.","authors":"Ryosei Harada, Takaya Sugimoto, Yuki Takegahara-Tamakawa, Amane Makino, Yuji Suzuki","doi":"10.1007/s10265-025-01638-4","DOIUrl":"10.1007/s10265-025-01638-4","url":null,"abstract":"<p><p>Homeostasis of inorganic phosphate (P<sub>i</sub>) in the chloroplasts is essential for healthy CO<sub>2</sub> assimilation. When P<sub>i</sub> in chloroplasts is insufficient, the increase in the CO<sub>2</sub> assimilation rate (A) with an increase in CO<sub>2</sub> level is restricted, whereas A per unit total protein level moderately decreases under low-to-normal CO<sub>2</sub> levels. Some phosphate transporters (PHT) are localized in the chloroplast envelope; however, their contribution to the maintenance of P<sub>i</sub> homeostasis for CO<sub>2</sub> assimilation has rarely been reported. In this study, we generated transgenic rice plants with RNAi-suppressed PHT4;4, one of the two genes of chloroplast envelope-localized PHT, and examined the changes in the characteristics of CO<sub>2</sub> assimilation. In three transgenic lines, the mRNA levels of PHT4;4 decreased by approximately 80% without a notable decrease in total leaf-P levels or total leaf-N levels, which is thought to approximately correspond to total protein levels. A in the transgenic plants tended to be slightly lower than that in the wild-type plants, irrespective of the CO<sub>2</sub> level, and typically increased to saturation with increasing CO<sub>2</sub> levels. A per unit total leaf-N level in transgenic plants tended to be slightly lower than that in wild-type plants. These results indicate that substantial PHT4;4 suppression caused slight symptoms of P<sub>i</sub>-limited CO<sub>2</sub> assimilation. Therefore, PHT4;4 is suggested to be involved in the maintenance of chloroplast P<sub>i</sub> homeostasis for healthy CO<sub>2</sub> assimilation, although its contribution is minor.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"667-677"},"PeriodicalIF":2.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144064069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}