{"title":"日本群岛中部山区高山特有的苔科植物的非辐射起源。","authors":"Ryutaro Koda, Yoshinori Murai, Hajime Ikeda","doi":"10.1007/s10265-025-01643-7","DOIUrl":null,"url":null,"abstract":"<p><p>Diversity of endemic species may result from two evolutionary processes: in-situ diversification (radiation) or phylogenetically independent divergences (non-radiation). To explore the evolutionary history of endemic-rich alpine flora in the Japanese Archipelago, we investigated the phylogenetic relationships of four endemic taxa of Draba (Brassicaceae) from the high mountains of central Honshu: D. kitadakensis, D. sachalinensis var. shinanomontana, D. sakuraii var. nipponica, and D. shiroumana. Using molecular phylogenetic analyses on plastid trnL-F and nuclear ITS sequence of 157 taxa, we found that the four taxa endemic to central Honshu did not form a monophyletic group and diverged from at least two evolutionary independent lineages. Moreover, ancestral area reconstruction further revealed that some of their ancestral species may have originated from different geographical regions. These findings indicate that the endemic Draba in central Honshu diverged through non-radiative evolutionary origin. Our study suggests that the richness of endemic species in the alpine zone of the Japanese Archipelago is associated with multiple sources with high species diversity located in nearby geographical regions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-radiative origin for alpine endemics of Draba (Brassicaceae) in the central mountains of the Japanese Archipelago.\",\"authors\":\"Ryutaro Koda, Yoshinori Murai, Hajime Ikeda\",\"doi\":\"10.1007/s10265-025-01643-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diversity of endemic species may result from two evolutionary processes: in-situ diversification (radiation) or phylogenetically independent divergences (non-radiation). To explore the evolutionary history of endemic-rich alpine flora in the Japanese Archipelago, we investigated the phylogenetic relationships of four endemic taxa of Draba (Brassicaceae) from the high mountains of central Honshu: D. kitadakensis, D. sachalinensis var. shinanomontana, D. sakuraii var. nipponica, and D. shiroumana. Using molecular phylogenetic analyses on plastid trnL-F and nuclear ITS sequence of 157 taxa, we found that the four taxa endemic to central Honshu did not form a monophyletic group and diverged from at least two evolutionary independent lineages. Moreover, ancestral area reconstruction further revealed that some of their ancestral species may have originated from different geographical regions. These findings indicate that the endemic Draba in central Honshu diverged through non-radiative evolutionary origin. Our study suggests that the richness of endemic species in the alpine zone of the Japanese Archipelago is associated with multiple sources with high species diversity located in nearby geographical regions.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-025-01643-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-025-01643-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
特有物种的多样性可能源于两个进化过程:原位多样化(辐射)和系统发育独立的分化(非辐射)。为探讨日本列岛高山特有植物区系的进化历史,研究了本州中部高山地区4个特有植物类群D. kitadakensis、D. sachalinensis var. shinanomontana、D. sakuraii var. nipponica和D. shiroumana的系统发育关系。通过对157个分类群的trnL-F和ITS核序列的分子系统发育分析,我们发现本州中部特有的4个分类群并没有形成一个单系群,而是从至少两个进化独立的谱系分化而来。此外,祖先区域重建进一步揭示了它们的一些祖先物种可能起源于不同的地理区域。这些发现表明,本州中部地区特有的Draba是通过非辐射进化起源而分化的。研究结果表明,日本列岛高寒地区特有物种的丰富度与邻近地理区域的多种物种多样性来源有关。
Non-radiative origin for alpine endemics of Draba (Brassicaceae) in the central mountains of the Japanese Archipelago.
Diversity of endemic species may result from two evolutionary processes: in-situ diversification (radiation) or phylogenetically independent divergences (non-radiation). To explore the evolutionary history of endemic-rich alpine flora in the Japanese Archipelago, we investigated the phylogenetic relationships of four endemic taxa of Draba (Brassicaceae) from the high mountains of central Honshu: D. kitadakensis, D. sachalinensis var. shinanomontana, D. sakuraii var. nipponica, and D. shiroumana. Using molecular phylogenetic analyses on plastid trnL-F and nuclear ITS sequence of 157 taxa, we found that the four taxa endemic to central Honshu did not form a monophyletic group and diverged from at least two evolutionary independent lineages. Moreover, ancestral area reconstruction further revealed that some of their ancestral species may have originated from different geographical regions. These findings indicate that the endemic Draba in central Honshu diverged through non-radiative evolutionary origin. Our study suggests that the richness of endemic species in the alpine zone of the Japanese Archipelago is associated with multiple sources with high species diversity located in nearby geographical regions.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.