Ontogeny and glandular features of Alexa grandiflora flowers offer evolutionary insights into the Angylocalyx clade: a Papilionoideae (Leguminosae) lineage with non-papilionaceous corolla.

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Guilherme Sousa da Silva, Viviane Gonçalves Leite, Marcus José de Azevedo Falcão, Juliana Villela Paulino, Simone Pádua Teixeira, Vidal de Freitas Mansano
{"title":"Ontogeny and glandular features of Alexa grandiflora flowers offer evolutionary insights into the Angylocalyx clade: a Papilionoideae (Leguminosae) lineage with non-papilionaceous corolla.","authors":"Guilherme Sousa da Silva, Viviane Gonçalves Leite, Marcus José de Azevedo Falcão, Juliana Villela Paulino, Simone Pádua Teixeira, Vidal de Freitas Mansano","doi":"10.1007/s10265-025-01669-x","DOIUrl":null,"url":null,"abstract":"<p><p>Alexa grandiflora Ducke is a papilionoid legume tree native to the Brazilian Amazon Forest. It belongs to the early-diverging Angylocalyx clade within the subfamily Papilionoideae, which is characterized by keel flowers, with some genera having flowers other than typical papilionaceous ones. This study describes the floral organography, organogenesis, and secretory structures of A. grandiflora and compares its floral morphology with that of three species from different genera within the Angylocalyx clade to deepen the understanding of the clade's floral structure and, by extension, the broader Papilionoideae subfamily. To conduct the study, floral buds and flowers from A. grandiflora were collected and processed for surface and anatomical studies, and flowers from herbarium specimens of Castanospermum australe, Xanthocercis madagascariensis and Angylocalyx oligophyllus to elucidate the clade's floral evolution and its implications for Papilionoideae diversity. Floral buds and flowers of A. grandiflora were analyzed using surface and anatomical techniques, while herbarium specimens of the comparative taxa were examined via scanning electron microscopy. In A. grandiflora, the apical meristem of the racemose inflorescence primary axis produces first-order bracts acropetally in a helical order. Sepal initiation is unidirectional, petal initiation is simultaneous, with the adaxial petal growing faster than the others. Antesepalous stamens appear simultaneously and concurrently with the carpel, while antepetalous stamens emerge simultaneously. Floral secretion of nectar, terpenes, and oleoresin supports phyllostomid bat pollination in Alexa species, consistent with the previously proposed association between intense nectar and terpene production and chiropterophily in the genus. Comparative analysis reveals that the Angylocalyx clade shares key floral traits, including a gamosepalous calyx, an enlarged adaxial petal, and similarly shaped lateral and abaxial petals. However, variations are observed in the type of inflorescence and in the level of insertion of the filament in the anther, highlighting the floral diversity within the clade.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-025-01669-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alexa grandiflora Ducke is a papilionoid legume tree native to the Brazilian Amazon Forest. It belongs to the early-diverging Angylocalyx clade within the subfamily Papilionoideae, which is characterized by keel flowers, with some genera having flowers other than typical papilionaceous ones. This study describes the floral organography, organogenesis, and secretory structures of A. grandiflora and compares its floral morphology with that of three species from different genera within the Angylocalyx clade to deepen the understanding of the clade's floral structure and, by extension, the broader Papilionoideae subfamily. To conduct the study, floral buds and flowers from A. grandiflora were collected and processed for surface and anatomical studies, and flowers from herbarium specimens of Castanospermum australe, Xanthocercis madagascariensis and Angylocalyx oligophyllus to elucidate the clade's floral evolution and its implications for Papilionoideae diversity. Floral buds and flowers of A. grandiflora were analyzed using surface and anatomical techniques, while herbarium specimens of the comparative taxa were examined via scanning electron microscopy. In A. grandiflora, the apical meristem of the racemose inflorescence primary axis produces first-order bracts acropetally in a helical order. Sepal initiation is unidirectional, petal initiation is simultaneous, with the adaxial petal growing faster than the others. Antesepalous stamens appear simultaneously and concurrently with the carpel, while antepetalous stamens emerge simultaneously. Floral secretion of nectar, terpenes, and oleoresin supports phyllostomid bat pollination in Alexa species, consistent with the previously proposed association between intense nectar and terpene production and chiropterophily in the genus. Comparative analysis reveals that the Angylocalyx clade shares key floral traits, including a gamosepalous calyx, an enlarged adaxial petal, and similarly shaped lateral and abaxial petals. However, variations are observed in the type of inflorescence and in the level of insertion of the filament in the anther, highlighting the floral diversity within the clade.

桔梗花的个体发育和腺体特征提供了对Angylocalyx枝的进化见解:一个具有非凤蝶花冠的凤蝶科(豆科)谱系。
雄花亚历克莎是一种原产于巴西亚马逊森林的百合花豆科树。它属于凤蝶亚科早期分化的Angylocalyx分支,以龙骨花为特征,有些属有典型凤蝶属以外的花。本研究描述了桔梗花的花器官、器官发生和分泌结构,并将其与Angylocalyx分支中不同属的三个物种的花形态进行了比较,以加深对桔梗花分支的花结构的理解,并进一步扩展到更广泛的凤蝶亚科。本研究采集了桔梗花的花蕾和花进行了表面和解剖研究,并采集了南方Castanospermum australe、马达加斯加黄杉(Xanthocercis madcariensis)和少叶花(Angylocalyx oligophyllus)的标本室标本,以阐明该支系的花进化及其对凤蝶科多样性的启示。利用表面和解剖技术对桔梗花的花蕾和花进行了分析,并用扫描电镜对比较类群的标本馆标本进行了研究。在桔梗中,总状花序主轴的顶端分生组织产生一级苞片,在顶端呈螺旋状排列。萼片的起始是单向的,花瓣的起始是同时发生的,且正面花瓣的生长速度较快。前萼雄蕊与心皮同时并发出现,而前萼雄蕊同时出现。花蜜、萜烯和油树脂的分泌支持亚历克斯物种的phyllostomid bat授粉,这与之前提出的强花蜜和萜烯的产生与该属的翼类习性之间的联系是一致的。比较分析表明,Angylocalyx分支具有相同的主要花性状,包括花萼花萼,正面花瓣扩大,侧面和背面花瓣形状相似。然而,在花序类型和花丝插入花药的水平上观察到变化,突出了进化枝内的花多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信