综合代谢组学和转录组学策略揭示大麦萌发期对涝渍胁迫的适应机制。

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Journal of Plant Research Pub Date : 2025-03-01 Epub Date: 2025-01-26 DOI:10.1007/s10265-025-01616-w
Haiye Luan, Jiajia Gao, Yu Li, Xin Qu, Jinghan Yang, Xin Qian, Meng Xu, Miao Sun, Xiao Xu, Huiquan Shen, Yinghu Zhang, Gongneng Feng
{"title":"综合代谢组学和转录组学策略揭示大麦萌发期对涝渍胁迫的适应机制。","authors":"Haiye Luan, Jiajia Gao, Yu Li, Xin Qu, Jinghan Yang, Xin Qian, Meng Xu, Miao Sun, Xiao Xu, Huiquan Shen, Yinghu Zhang, Gongneng Feng","doi":"10.1007/s10265-025-01616-w","DOIUrl":null,"url":null,"abstract":"<p><p>Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley. Seed germination plays a critical role in the establishment of seedlings and is significantly impacted by the presence of waterlogging stress. However, there is a limited understanding of the regulatory mechanisms of gene expression and metabolic processes in barley during the germination stage under waterlogging stress. This study aimed to investigate the metabolome and transcriptome responses in germinating barley seeds under waterlogging stress. The findings of the study revealed that waterlogging stress sharply decreased seed germination rate and seedling growth. The tolerant genotype (LLZDM) exhibited higher levels of antioxidase activities and lower malondialdehyde (MDA) content in comparison to the sensitive genotype (NN). In addition, waterlogging induced 86 and 85 differentially expressed metabolites (DEMs) in LLZDM and NN, respectively. Concurrently, transcriptome analysis identified 1776 and 839 differentially expressed genes (DEGs) in LLZDM and NN, respectively. Notably, the expression of genes associated with redox reactions, hormone regulation, and other biological processes were altered in response to waterlogging stress. Furthermore, the integrated transcriptomic and metabolomic analyses revealed that the DEGs and DEMs implicated in mitigating waterlogging stress primarily pertained to the regulation of pyruvate metabolism and flavonoid biosynthesis. Moreover, waterlogging might promote flavonoid biosynthesis by regulating 15 flavonoid-related genes and 10 metabolites. The present research provides deeper insights into the overall understanding of waterlogging-tolerant mechanisms in barley during the germination process.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"289-302"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated metabolomic and transcriptomic strategies to reveal adaptive mechanisms in barley plant during germination stage under waterlogging stress.\",\"authors\":\"Haiye Luan, Jiajia Gao, Yu Li, Xin Qu, Jinghan Yang, Xin Qian, Meng Xu, Miao Sun, Xiao Xu, Huiquan Shen, Yinghu Zhang, Gongneng Feng\",\"doi\":\"10.1007/s10265-025-01616-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley. Seed germination plays a critical role in the establishment of seedlings and is significantly impacted by the presence of waterlogging stress. However, there is a limited understanding of the regulatory mechanisms of gene expression and metabolic processes in barley during the germination stage under waterlogging stress. This study aimed to investigate the metabolome and transcriptome responses in germinating barley seeds under waterlogging stress. The findings of the study revealed that waterlogging stress sharply decreased seed germination rate and seedling growth. The tolerant genotype (LLZDM) exhibited higher levels of antioxidase activities and lower malondialdehyde (MDA) content in comparison to the sensitive genotype (NN). In addition, waterlogging induced 86 and 85 differentially expressed metabolites (DEMs) in LLZDM and NN, respectively. Concurrently, transcriptome analysis identified 1776 and 839 differentially expressed genes (DEGs) in LLZDM and NN, respectively. Notably, the expression of genes associated with redox reactions, hormone regulation, and other biological processes were altered in response to waterlogging stress. Furthermore, the integrated transcriptomic and metabolomic analyses revealed that the DEGs and DEMs implicated in mitigating waterlogging stress primarily pertained to the regulation of pyruvate metabolism and flavonoid biosynthesis. Moreover, waterlogging might promote flavonoid biosynthesis by regulating 15 flavonoid-related genes and 10 metabolites. The present research provides deeper insights into the overall understanding of waterlogging-tolerant mechanisms in barley during the germination process.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\" \",\"pages\":\"289-302\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-025-01616-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-025-01616-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大麦(Hordeum vulgare L.)是一种重要的谷类作物,用于动物饲料、啤酒酿造和食品生产。涝渍胁迫是影响大麦产量和品质的主要非生物胁迫之一。种子萌发在幼苗形成过程中起着至关重要的作用,并受到涝渍胁迫的显著影响。然而,对涝渍胁迫下大麦萌发期基因表达和代谢过程的调控机制了解有限。本研究旨在研究涝渍胁迫下萌发大麦种子的代谢组和转录组反应。研究结果表明,涝渍胁迫显著降低了种子发芽率和幼苗生长。与敏感基因型(NN)相比,抗性基因型(LLZDM)表现出较高的抗氧化酶活性和较低的丙二醛(MDA)含量。此外,涝渍在LLZDM和NN中分别诱导了86种和85种差异表达代谢物(dem)。同时,转录组分析在LLZDM和NN中分别鉴定出1776和839个差异表达基因(DEGs)。值得注意的是,与氧化还原反应、激素调节和其他生物过程相关的基因表达在涝渍胁迫下发生了改变。此外,综合转录组学和代谢组学分析表明,参与减轻涝渍胁迫的DEGs和dem主要与调节丙酮酸代谢和类黄酮生物合成有关。涝渍可能通过调节15个类黄酮相关基因和10种代谢物促进黄酮类化合物的合成。本研究为全面了解大麦萌发过程中的耐涝机制提供了更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated metabolomic and transcriptomic strategies to reveal adaptive mechanisms in barley plant during germination stage under waterlogging stress.

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley. Seed germination plays a critical role in the establishment of seedlings and is significantly impacted by the presence of waterlogging stress. However, there is a limited understanding of the regulatory mechanisms of gene expression and metabolic processes in barley during the germination stage under waterlogging stress. This study aimed to investigate the metabolome and transcriptome responses in germinating barley seeds under waterlogging stress. The findings of the study revealed that waterlogging stress sharply decreased seed germination rate and seedling growth. The tolerant genotype (LLZDM) exhibited higher levels of antioxidase activities and lower malondialdehyde (MDA) content in comparison to the sensitive genotype (NN). In addition, waterlogging induced 86 and 85 differentially expressed metabolites (DEMs) in LLZDM and NN, respectively. Concurrently, transcriptome analysis identified 1776 and 839 differentially expressed genes (DEGs) in LLZDM and NN, respectively. Notably, the expression of genes associated with redox reactions, hormone regulation, and other biological processes were altered in response to waterlogging stress. Furthermore, the integrated transcriptomic and metabolomic analyses revealed that the DEGs and DEMs implicated in mitigating waterlogging stress primarily pertained to the regulation of pyruvate metabolism and flavonoid biosynthesis. Moreover, waterlogging might promote flavonoid biosynthesis by regulating 15 flavonoid-related genes and 10 metabolites. The present research provides deeper insights into the overall understanding of waterlogging-tolerant mechanisms in barley during the germination process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信