Chlorophyll fluorescence responses to CO2 availability reveal crassulacean acid metabolism in epiphytic orchids.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Sae Bekki, Kenji Suetsugu, Koichi Kobayashi
{"title":"Chlorophyll fluorescence responses to CO<sub>2</sub> availability reveal crassulacean acid metabolism in epiphytic orchids.","authors":"Sae Bekki, Kenji Suetsugu, Koichi Kobayashi","doi":"10.1007/s10265-024-01608-2","DOIUrl":null,"url":null,"abstract":"<p><p>Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO<sub>2</sub> and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO<sub>2</sub> elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids. In CAM-performing Kalanchoe species, the effective quantum yield of photosystem II showed no change in response to CO<sub>2</sub> elimination during the daytime but decreased with CO<sub>2</sub> elimination at dusk. We applied this method to reveal the photosynthetic mode of epiphytic orchids and found that Gastrochilus japonicus, Oberonia japonica, and Bulbophyllum inconspicuum, but not B. drymoglossum, are constitutive CAM plants, which were also confirmed by malate determination. Our data propose a novel approach to identify and characterize CAM plants without labor-intensive experimental procedures. Although B. drymoglossum leaves had relatively high malate content, they did not depend on it to perform photosynthesis even under water-deficient or increased light conditions. Anatomical comparisons revealed a notable difference in leaf structure between B. drymoglossum and B. inconspicuum; B. drymoglossum leaves possess large water storage tissue internally, unlike B. inconspicuum leaves, which develop pseudobulbs. Our findings suggest different evolutionary adaptations to water deficit between closely related B. drymoglossum and B. inconspicuum.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01608-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO2 and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO2 elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids. In CAM-performing Kalanchoe species, the effective quantum yield of photosystem II showed no change in response to CO2 elimination during the daytime but decreased with CO2 elimination at dusk. We applied this method to reveal the photosynthetic mode of epiphytic orchids and found that Gastrochilus japonicus, Oberonia japonica, and Bulbophyllum inconspicuum, but not B. drymoglossum, are constitutive CAM plants, which were also confirmed by malate determination. Our data propose a novel approach to identify and characterize CAM plants without labor-intensive experimental procedures. Although B. drymoglossum leaves had relatively high malate content, they did not depend on it to perform photosynthesis even under water-deficient or increased light conditions. Anatomical comparisons revealed a notable difference in leaf structure between B. drymoglossum and B. inconspicuum; B. drymoglossum leaves possess large water storage tissue internally, unlike B. inconspicuum leaves, which develop pseudobulbs. Our findings suggest different evolutionary adaptations to water deficit between closely related B. drymoglossum and B. inconspicuum.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信