Journal of Plant Research最新文献

筛选
英文 中文
Effect of robbing intensity on reproductive success of Symphytum officinale (Boraginaceae). 盗采强度对西兰花(婆婆纳科)繁殖成功率的影响。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2024-07-01 Epub Date: 2024-03-20 DOI: 10.1007/s10265-024-01536-1
Nurbiye Ehmet, Tai-Hong Wang, Yi-Ping Zhang, Xiang Zhao, Kun Sun, Qin-Zheng Hou
{"title":"Effect of robbing intensity on reproductive success of Symphytum officinale (Boraginaceae).","authors":"Nurbiye Ehmet, Tai-Hong Wang, Yi-Ping Zhang, Xiang Zhao, Kun Sun, Qin-Zheng Hou","doi":"10.1007/s10265-024-01536-1","DOIUrl":"10.1007/s10265-024-01536-1","url":null,"abstract":"<p><p>The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation. In this study, Symphytum officinale was used to detect the effect of nectar robbers on pollinators under different robbing intensity as well as their effects on plant reproductive success. Six robbing levels and three bumblebees with mixed foraging behaviors were used to evaluate the effect of different robbing intensity on pollinator behavior, visitation rate, flower longevity and pollen deposition. Our results indicated that the robbing rate increased gradually with the proportion of robbed flowers, but which did not affect the frequency of legitimate visits. The increase of robbing rate promoted the corolla abscission, and then enhanced the self-pollen deposition, but which had no significant effect on cross-pollen deposition. These results indicate that the overall fitness of S. officinale was improved by combined self and cross-pollination modes when visited by both pollinators and nectar robbers simultaneously. Although nectar robbing is not uncommon, its consequences for pollination in the interaction web have not been well studied. Our results emphasize the significance of indirect impacts in mediating the adaptive outcomes of species interactions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological, genetic and ecological divergence in near-cryptic bryophyte species widespread in the Holarctic: the Dicranum acutifolium complex (Dicranales) revisited in the Alps. 全北极地区广泛分布的近隐性毛地黄物种的形态、遗传和生态分化:阿尔卑斯山 Dicranum acutifolium 复合物(Dicranales)再探。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2024-07-01 Epub Date: 2024-03-23 DOI: 10.1007/s10265-024-01534-3
Thomas Kiebacher, Péter Szövényi
{"title":"Morphological, genetic and ecological divergence in near-cryptic bryophyte species widespread in the Holarctic: the Dicranum acutifolium complex (Dicranales) revisited in the Alps.","authors":"Thomas Kiebacher, Péter Szövényi","doi":"10.1007/s10265-024-01534-3","DOIUrl":"10.1007/s10265-024-01534-3","url":null,"abstract":"<p><p>There is mounting evidence that reproductively isolated, but morphologically weakly differentiated species (so-called cryptic species) represent a substantial part of biological diversity, especially in bryophytes. We assessed the evolutionary history and ecological differentiation of a species pair, Dicranum brevifolium and D. septentrionale, which have overlapping ranges in the Holarctic. Despite their morphological similarity, we found similar genetic differentiation as between morphologically well-differentiated Dicranum species. Moreover, we detected gene tree discordance between plastid and nuclear markers, but neither of the two datasets resolved the two as sister species. The signal in trnL-trnF better reflects the morphological and ecological affinities and indicates a close relationship while ITS sequence data resolved the two taxa as phylogenetically distantly related. The discordance is probably unrelated to the ecological differentiation of D. septentrionale to colonise subneutral to alkaline substrates (vs. acidic in D. brevifolium), because this ability is rare in the genus and shared with D. acutifolium. This taxon is the closest relative of D. septentrionale according to the trnL-trnF data and does not share the discordance in ITS. We furthermore demonstrate that beside D. acutifolium, both D. septentrionale and D. brevifolium occur in the Alps but D. brevifolium is most likely rarer. Based on morphological analyses including factor analysis for mixed data of 45 traits we suggest treating the latter two as near-cryptic species and we recommend verifying morphological determinations molecularly.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tolerance to mild shading levels in cattail as related to increased photosynthesis and changes in its leaf area and anatomy. 香蒲对轻度遮光的耐受性与光合作用的增加及其叶面积和解剖结构的变化有关。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2024-07-01 Epub Date: 2024-03-22 DOI: 10.1007/s10265-024-01538-z
Carlos Henrique Goulart Dos Reis, Poliana Noemia da Silva, Evaristo Mauro de Castro, Fabricio José Pereira
{"title":"Tolerance to mild shading levels in cattail as related to increased photosynthesis and changes in its leaf area and anatomy.","authors":"Carlos Henrique Goulart Dos Reis, Poliana Noemia da Silva, Evaristo Mauro de Castro, Fabricio José Pereira","doi":"10.1007/s10265-024-01538-z","DOIUrl":"10.1007/s10265-024-01538-z","url":null,"abstract":"<p><p>Shading is an environmental factor that has been little investigated regarding its effects on emergent aquatic plants. Typha domingensis Pers. is an emergent macrophyte that demonstrates some plasticity for self-shading, and as it can shade other species in the same area, the effect of shading on its traits deserves further investigation. The objective of the present study was to evaluate the gas exchange, leaf anatomy, and growth of T. domingensis cultivated under increasing shading intensities. The plants were collected and propagated in a greenhouse, and the clones were subjected to four shading intensities: 0% (unshaded), 35%, 73%, and 83% shading created by black nets. Growth traits, clonal production, photosynthesis, transpiration, and leaf anatomy were evaluated. The 73% and 83% shading promoted the death of all plants, but all plants survived in the 35% and unshaded treatments. Compared with the unshaded treatment, the 35% shading treatment promoted a higher photosynthetic rate and greater transpiration, supporting increased growth and production of clones. The increase in the photosynthetic rate in the 35% shading was related to the increase in leaf area which increased the photosynthesis of the whole plant. The 73% and 83% treatments inhibited the development of photosynthetic parenchyma and stomata in T. domingensis, leading to a drastic reduction in photosynthesis and energy depletion. Therefore, T. domingensis does not tolerate intense shading, but its photosynthetic characteristics and growth are favored by mild shading, a factor that may be of great importance for its competitiveness and invasive behavior.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plastome structure, phylogeny and evolution of plastid genes in Reevesia (Helicteroideae, Malvaceae). Reevesia(Helicteroideae,锦葵科)的质体结构、系统发育和质体基因的进化。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2024-07-01 Epub Date: 2024-05-13 DOI: 10.1007/s10265-024-01547-y
Li-Yang Geng, Tian-Yi Jiang, Xin Chen, Qiang Li, Jian-Hui Ma, Wen-Xiang Hou, Chen-Qian Tang, Qin Wang, Yun-Fei Deng
{"title":"Plastome structure, phylogeny and evolution of plastid genes in Reevesia (Helicteroideae, Malvaceae).","authors":"Li-Yang Geng, Tian-Yi Jiang, Xin Chen, Qiang Li, Jian-Hui Ma, Wen-Xiang Hou, Chen-Qian Tang, Qin Wang, Yun-Fei Deng","doi":"10.1007/s10265-024-01547-y","DOIUrl":"10.1007/s10265-024-01547-y","url":null,"abstract":"<p><p>Reevesia is an eastern Asian-eastern North American disjunction genus in the family Malvaceae s.l. and comprises approximately 25 species. The relationships within the genus are not well understood. Here, 15 plastomes representing 12 Reevesia species were compared, with the aim of better understanding the species circumscription and phylogenetic relationships within the genus and among genera in the family Malvaceae s.l. The 11 newly sequenced plastomes range between 161,532 and 161, 945 bp in length. The genomes contain 114 unique genes, 18 of which are duplicated in the inverted repeats (IRs). Gene content of these plastomes is nearly identical. All the protein-coding genes are under purifying selection in the Reevesia plastomes compared. The top ten hypervariable regions, SSRs, and the long repeats identified are potential molecular markers for future population genetic and phylogenetic studies. Phylogenetic analysis based on the whole plastomes confirmed the monophyly of Reevesia and a close relationship with Durio (traditional Bombacaceae) in subfamily Helicteroideae, but not with the morphologically similar genera Pterospermum and Sterculia (both of traditional Sterculiaceae). Phylogenetic relationships within Reevesia suggested that two species, R. pubescens and R. thyrsoidea, as newly defined, are not monophyletic. Six taxa, R. membranacea, R. xuefengensis, R. botingensis, R. lofouensis, R. longipetiolata and R. pycnantha, are suggested to be recognized.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of sweetpotato glutamylcysteine synthetase (IbGCS) in Arabidopsis confers tolerance to drought and salt stresses. 拟南芥中过表达甘薯谷氨酰半胱氨酸合成酶(IbGCS)可增强对干旱和盐胁迫的耐受性。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2024-07-01 Epub Date: 2024-05-17 DOI: 10.1007/s10265-024-01548-x
Zhe Yang, Yuan Wang, Qirui Cheng, Xuan Zou, Yanxin Yang, Peng Li, Sijie Wang, Yue Su, Dongjing Yang, Ho Soo Kim, Xiaoyun Jia, Lingzhi Li, Sang-Soo Kwak, Wenbin Wang
{"title":"Overexpression of sweetpotato glutamylcysteine synthetase (IbGCS) in Arabidopsis confers tolerance to drought and salt stresses.","authors":"Zhe Yang, Yuan Wang, Qirui Cheng, Xuan Zou, Yanxin Yang, Peng Li, Sijie Wang, Yue Su, Dongjing Yang, Ho Soo Kim, Xiaoyun Jia, Lingzhi Li, Sang-Soo Kwak, Wenbin Wang","doi":"10.1007/s10265-024-01548-x","DOIUrl":"10.1007/s10265-024-01548-x","url":null,"abstract":"<p><p>Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T<sub>3</sub> Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Awards in the Journal of Plant Research. 植物研究》杂志上的 2024 个奖项。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2024-07-01 DOI: 10.1007/s10265-024-01549-w
Maki Katsuhara
{"title":"2024 Awards in the Journal of Plant Research.","authors":"Maki Katsuhara","doi":"10.1007/s10265-024-01549-w","DOIUrl":"10.1007/s10265-024-01549-w","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Floral scents, specialized metabolites and stress-response activities in Heritiera fomes and Bruguiera gymnorrhiza from Sundarban mangrove ecosystem. 巽他班红树林生态系统中 Heritiera fomes 和 Bruguiera gymnorrhiza 的花香、特殊代谢物和应激反应活性。
IF 2.8 3区 生物学
Journal of Plant Research Pub Date : 2024-05-01 Epub Date: 2024-02-09 DOI: 10.1007/s10265-024-01527-2
Ishita Paul, Sourav Manna, Ritwika Bera, Anup Kumar Paine, Deepanjan Mridha, Prakash Chandra Gorain, Tarit Roychowdhury, Mousumi Poddar Sarkar
{"title":"Floral scents, specialized metabolites and stress-response activities in Heritiera fomes and Bruguiera gymnorrhiza from Sundarban mangrove ecosystem.","authors":"Ishita Paul, Sourav Manna, Ritwika Bera, Anup Kumar Paine, Deepanjan Mridha, Prakash Chandra Gorain, Tarit Roychowdhury, Mousumi Poddar Sarkar","doi":"10.1007/s10265-024-01527-2","DOIUrl":"10.1007/s10265-024-01527-2","url":null,"abstract":"<p><p>Floral biochemistry and stress physiology is an underexplored aspect of mangroves, which should be investigated as part of preservation and restoration efforts. A thriving true mangrove tree (Bruguiera gymnorrhiza (L.) Lamk.) and a threatened mangrove-associate species (Heritiera fomes Buch. Ham.) were studied in the Sundarban region of India for seasonal variations in floral odours, non-volatile phytochemicals, antioxidant enzyme activities, and surface water chemistry in surrounding habitat. Both species were found to exhibit significant differences in floral volatilomes, protein contents, antioxidant enzyme activities, total flavonoids, and total phenolic contents between spring and autumn blooms. The bird-pollinated flowers of B. gymnorrhiza also showed considerable seasonal differences in floral anthocyanin and proline contents, indicating vulnerability of the post-anthesis open flowers to environmental factors. Contrarily to previous findings, B. gymnorrhiza floral bouquet appeared to be enriched in various classes of volatiles - dominated by sulphurous compounds in bud stage and terpenoids in open stage. Floral anthocyanins, contributing to the striking colouration of the calyx, were found to comprise cyanidin and delphinidin derivatives. Other glycosides of cyanidin and delphinidin were detected in H. fomes flowers, contributing to visual guides to potential food rewards for pollinating insects. Floral tissue in H. fomes was found to be protected by densely overlapping layers of stellate trichomes containing sesquiterpenoids as phytoprotectants. Comparison of the two floral species suggested that H. fomes flowering is optimized to oligohaline (but not freshwater) vernal conditions; whereas B. gymnorrhiza blooms are adapted for biologically enriched (including abundant herbivores and microbial growth), mesohaline forest habitats.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139712478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Update of phosphate transport regulations. 更新磷酸盐运输条例。
IF 2.8 3区 生物学
Journal of Plant Research Pub Date : 2024-05-01 DOI: 10.1007/s10265-024-01544-1
Satomi Kanno, Laurent Nussaume
{"title":"Update of phosphate transport regulations.","authors":"Satomi Kanno, Laurent Nussaume","doi":"10.1007/s10265-024-01544-1","DOIUrl":"10.1007/s10265-024-01544-1","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140866987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of plant immunity and biotic interactions under phosphate deficiency. 缺磷情况下植物免疫力和生物相互作用的调节。
IF 2.7 3区 生物学
Journal of Plant Research Pub Date : 2024-05-01 Epub Date: 2024-05-02 DOI: 10.1007/s10265-024-01546-z
Kanako Inoue, Natsuki Tsuchida, Yusuke Saijo
{"title":"Modulation of plant immunity and biotic interactions under phosphate deficiency.","authors":"Kanako Inoue, Natsuki Tsuchida, Yusuke Saijo","doi":"10.1007/s10265-024-01546-z","DOIUrl":"10.1007/s10265-024-01546-z","url":null,"abstract":"<p><p>Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic regulation of hydrogen sulfide and nitric oxide on biochemical components, exopolysaccharides, and nitrogen metabolism in nickel stressed rice field cyanobacteria. 硫化氢和一氧化氮对镍胁迫稻田蓝藻的生化成分、外多糖和氮代谢的协同调控。
IF 2.8 3区 生物学
Journal of Plant Research Pub Date : 2024-05-01 Epub Date: 2024-03-09 DOI: 10.1007/s10265-024-01530-7
Garima Singh, Sheo Mohan Prasad
{"title":"Synergistic regulation of hydrogen sulfide and nitric oxide on biochemical components, exopolysaccharides, and nitrogen metabolism in nickel stressed rice field cyanobacteria.","authors":"Garima Singh, Sheo Mohan Prasad","doi":"10.1007/s10265-024-01530-7","DOIUrl":"10.1007/s10265-024-01530-7","url":null,"abstract":"<p><p>The present study examined the regulatory mechanism of hydrogen sulfide (H<sub>2</sub>S) and nitric oxide (NO) in nickel (Ni) stressed cyanobacteria viz., Nostoc muscorum and Anabaena sp. by analyzing growth, photosynthetic pigments, biochemical components (protein and carbohydrate), exopolysaccharides (EPS), inorganic nitrogen content, and activity of enzymes comprised in nitrogen metabolism and Ni accumulation. The 1 µM Ni substantially diminished growth by 18% and 22% in N. muscorum and Anabaena sp. respectively, along with declining the pigment contents (Chl a/Car ratio and phycobiliproteins), and biochemical components. It also exerted negative impacts on inorganic uptake of nitrate and nitrite contents; nitrate reductase and nitrite reductase; and ammonium assimilating enzymes (glutamine synthetase, glutamate synthase, and glutamate dehydrogenase exhibited a reverse trend) activities. Nonetheless, the adverse impact of Ni can be mitigated through the exogenous supplementation of NaHS [sodium hydrosulfide (8 µM); H<sub>2</sub>S donor] and SNP [sodium nitroprusside (10 µM); NO donor] which showed substantial improvement on growth, pigments, nitrogen metabolism, and EPS layer and noticeably occurred as a consequence of a substantial reduction in Ni accumulation content which minimized the toxicity effects. The accumulation of Ni on both the cyanobacterial cell surface (EPS layer) are confirmed by the SEM-EDX analysis. Further, the addition of NO scavenger (PTIO; 20 µM) and inhibitor of NO (L-NAME; 100 µM); and H<sub>2</sub>S scavenger (HT; 20 µM) and H<sub>2</sub>S inhibitor (PAG; 50 µM) reversed the positive responses of H<sub>2</sub>S and NO and damages were more prominent under Ni stress thereby, suggesting the downstream signaling of H<sub>2</sub>S on NO-mediated alleviation. Thus, this study concludes the crosstalk mechanism of H<sub>2</sub>S and NO in the mitigation of Ni-induced toxicity in rice field cyanobacteria.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信