{"title":"Regulation of heterochromatin organization in plants.","authors":"Noriko Inada","doi":"10.1007/s10265-024-01550-3","DOIUrl":"10.1007/s10265-024-01550-3","url":null,"abstract":"<p><p>Heterochromatin is a nuclear area that contains highly condensed and transcriptionally inactive chromatin. Alterations in the organization of heterochromatin are correlated with changes in gene expression and genome stability, which affect various aspects of plant life. Thus, studies of the molecular mechanisms that regulate heterochromatin organization are important for understanding the regulation of plant physiology. Microscopically, heterochromatin can be characterized as chromocenters that are intensely stained with DNA-binding fluorescent dyes. Arabidopsis thaliana exhibits distinctive chromocenters in interphase nuclei, and genetic studies combined with cytological analyses have identified a number of factors that are involved in heterochromatin assembly and organization. In this review, I will summarize the factors involved in the regulation of heterochromatin organization in plants.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"685-693"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ewelina Szczepocka, Paulina Nowicka-Krawczyk, Grzegorz J Wolski
{"title":"Terrestrial mosses as a substrate and potential host for cyanobacteria, green algae and diatoms.","authors":"Ewelina Szczepocka, Paulina Nowicka-Krawczyk, Grzegorz J Wolski","doi":"10.1007/s10265-024-01551-2","DOIUrl":"10.1007/s10265-024-01551-2","url":null,"abstract":"<p><p>Most studies of terrestrial bryophytes as natural substrates for photosynthetic microorganisms have been performed in the polar regions, where bryophytes are an important part of the ecosystem. As they remain green throughout the year, bryophytes may also be an ideal substrate for epiphytic organisms in temperate regions. The present study investigated the colonization potential and diversity of microalgae on selected plant species in riparian forest and spruce monoculture in a temperate region. It examines whether the presence of algae is related to substrate humidity, the micromorphology of gametophyte or the seasonal availability of substrate. The taxonomic diversity of algae was studied. Cyanobacteria and green algae were cultured on BG-11 agar medium, while diatoms were identified in permanent diatomaceous slides. The alpha- and beta-diversity indices were calculated, and the communities were compared using Bray-Curtis distances and multidimensional correspondence analyses. Our findings indicate that the largest number of alga species were diatoms; however, their presence was only observed in riparian forest and was associated with high humidity. Both aerophilic and freshwater taxa were noted, the latter carried by water from nearby aquatic ecosystem. Green algae were present in both phytocoenoses and humidity appears to have no substantial effect on the degree of colonization; their diversity was low and the group consisted of terrestrial taxa. In two bryophytes growing at the highest humidity, cyanobacteria were only identified in culture. The key factor influencing the degree of microalgae colonization was the humidity of the substrate, which was related to the distance from water.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"847-861"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Localization of the MTP4 transporter to trans-Golgi network in pollen tubes of Arabidopsis thaliana.","authors":"Keita Muro, Shoji Segami, Miki Kawachi, Nodoka Horikawa, Ayane Namiki, Komachi Hashiguchi, Masayoshi Maeshima, Junpei Takano","doi":"10.1007/s10265-024-01559-8","DOIUrl":"10.1007/s10265-024-01559-8","url":null,"abstract":"<p><p>Zinc (Zn) is an essential element for plants. Numerous proteins in different cellular compartments require Zn for their structure and function. Zn can be toxic when it accumulates in high levels in the cytoplasm. Therefore, Zn homeostasis at tissue, cell, and organelle levels is vital for plant growth. A part of the metal tolerance protein (MTP) / Cation Diffusion Facilitator (CDF) transporters functions as Zn transporters, exporting Zn from the cytosol to various membrane compartments. In Arabidopsis thaliana, MTP1, MTP2, MTP3, MTP4, MTP5, and MTP12 are classified as Zn transporters (Zn-CDF). In this study, we systematically analyzed the localization of GFP-fused Zn-CDFs in the leaf epidermal cells of Nicotiana benthamiana. As previously reported, MTP1 and MTP3 were localized to tonoplast, MTP2 to endoplasmic reticulum, and MTP5 to Golgi. In addition, we identified the localization of MTP4 to trans-Golgi Network (TGN). Since MTP4 is specifically expressed in pollen, we analyzed the localization of MTP4-GFP in the Arabidopsis pollen tubes and confirmed that it is in the TGN. We also showed the Zn transport capability of MTP4 in yeast cells. We then analyzed the phenotype of an mtp4 T-DNA insertion mutant under both limited and excess Zn conditions. We found that their growth and fertility were not largely different from the wild-type. Our study has paved the way for investigating the possible roles of MTP4 in metallating proteins in the secretory pathway or in exporting excess Zn through exocytosis. In addition, our system of GFP-fused MTPs will help study the mechanisms for targeting transporters to specific membrane compartments.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"939-950"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anderson Javier Alvarado-Reyes, Juliana Villela Paulino, Vanessa Terra, Vidal de Freitas Mansano
{"title":"Floral ontogeny reveals potential synapomorphies for Senegalia sect. Monacanthea p.p. (Leguminosae).","authors":"Anderson Javier Alvarado-Reyes, Juliana Villela Paulino, Vanessa Terra, Vidal de Freitas Mansano","doi":"10.1007/s10265-024-01554-z","DOIUrl":"10.1007/s10265-024-01554-z","url":null,"abstract":"<p><p>Senegalia was recently described as non-monophyletic; however, its sections exhibit robust monophyletic support, suggesting a potential reclassification into separate genera-Senegalia sect. Monocanthea p.p. is the largest section. It contains 164 species of pantropical distribution and includes all of the current 99 neotropical species of Senegalia; however, no morphological characteristics are available to differentiate this section. To characterize this section, we examined floral developmental traits in four species of Senegalia sect. Monocanthea p.p. These traits were previously considered as potentially distinguishing features within Acacia s.l. and include the onset patterns of the androecium, the timing of calyx union, the origin of the staminal disc, and the presence of stomata on the petals. Furthermore, we analyzed previously unexplored traits, such as corolla union types, inflorescence development, and micromorphological features related to the indumentum, as well as the presence and location of stomata. The characteristics proposed as potential synapomorphies of the group include the postgenital fusion of the corolla and the presence of a staminal disc formed at the base of the filaments. The other analyzed floral characteristics were not informative for the characterization of the group. Future studies of floral ontogeny will help to establish more precise patterns, mainly whether corolla union and staminal tube formation occur similarly in African and Asian sections of Senegalia.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"907-925"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical forces in plant growth and development.","authors":"Akitoshi Iwamoto, Mariko Asaoka","doi":"10.1007/s10265-024-01576-7","DOIUrl":"10.1007/s10265-024-01576-7","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"695-696"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"What keeps the style under tension? Experimental tests to understand the biomechanics of the explosive style movement in Marantaceae.","authors":"Marcus Jerominek, Regine Claßen-Bockhoff","doi":"10.1007/s10265-024-01535-2","DOIUrl":"10.1007/s10265-024-01535-2","url":null,"abstract":"<p><p>Pollination in Marantaceae is mediated by an explosive style movement. Before release, style tension is held by the hooded staminode. When a pollinator touches the trigger appendage of the hooded staminode the latter deforms and the style rapidly curls upwards. This movement has been interpreted as a turgor movement by some authors, but recent studies clearly indicate that setup, hold and release of tension are purely mechanical processes. However, in view of the high diversity of hooded staminodes, the question arises what keeps the tension in species with very thin staminodes. To test the holding mechanisms, we conducted mechanical and physico-chemical release experiments in four species with robust and four species with thin hooded staminodes in their natural tropical environment. We found almost the same response of all species to mechanical treatments, but species-specific reactions to different physico-chemical conditions. This indicates that style release follows the same mechanical principles in all species, but that the sensitivity of the explosive movement depends on material properties like tissue thickness and turgescence. As to the holding mechanisms, we found different degrees of floral synorganization. The hood of the hooded staminode formerly interpreted as an important holding structure does not play a noteworthy role. Instead, the basal plate of the hooded staminode antagonises the pressure of the style head against the holding point of the hooded staminode in species with robust hooded staminodes and well-developed basal plates. In some species with a thin hooded staminode, the latter is closely attached to the style and most likely stabilises tension by adhesive forces. In another species, a morphologically analogous structure adopts the function of the basal plate. We conclude that the holding mechanism of the style tension diversified during the evolution of Marantaceae whereas the release mechanism itself has been conserved throughout the family.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"745-762"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140306018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prolonged exposure to hypergravity increases number and size of cells and enhances lignin deposition in the stem of Arabidopsis thaliana.","authors":"Hironori Shinohara, Masaki Muramoto, Daisuke Tamaoki, Hiroyuki Kamachi, Hiroshi Inoue, Atsushi Kume, Ichirou Karahara","doi":"10.1007/s10265-024-01556-x","DOIUrl":"10.1007/s10265-024-01556-x","url":null,"abstract":"<p><p>We have performed a lab-based hypergravity cultivation experiment using a centrifuge equipped with a lighting system and examined long-term effects of hypergravity on the development of the main axis of the Arabidopsis (Arabidopsis thaliana (L.) Heynh.) primary inflorescence, which comprises the rachis and peduncle, collectively referred to as the main stem for simplicity. Plants grown under 1 × g (gravitational acceleration on Earth) conditions for 20-23 days and having the first visible flower bud were exposed to hypergravity at 8 × g for 10 days. We analyzed the effect of prolonged hypergravity conditions on growth, lignin deposition, and tissue anatomy of the main stem. As a result, the length of the main stem decreased and cross-sectional area, dry mass per unit length, cell number, and lignin content of the main stem significantly increased under hypergravity. Lignin content in the rosette leaves also increased when they were exposed to hypergravity during their development. Except for interfascicular fibers, cross-sectional areas of the tissues composing the internode significantly increased under hypergravity in most types of the tissues in the basal part than the apical part of the main stem, indicating that the effect of hypergravity is more pronounced in the basal part than the apical part. The number of cells in the fascicular cambium and xylem significantly increased under hypergravity both in the apical and basal internodes of the main stem, indicating a possibility that hypergravity stimulates procambium activity to produce xylem element more than phloem element. The main stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under prolonged hypergravity conditions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"927-937"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L Seixas, K R Barão, Rvr Lopes, D Serafim, Guilherme Ramos Demetrio
{"title":"Is urbanization a driver of aboveground biomass allocation in a widespread tropical shrub, Turnera subulata (Turneroideae - Passifloraceae)?","authors":"L Seixas, K R Barão, Rvr Lopes, D Serafim, Guilherme Ramos Demetrio","doi":"10.1007/s10265-024-01560-1","DOIUrl":"10.1007/s10265-024-01560-1","url":null,"abstract":"<p><p>Plant biomass allocation is mainly affected by the environment where each individual grows. In this sense, through the rapid global expansion of impermeable areas, urbanization has strong, albeit poorly understood, consequences on the biomass allocation of plants found in this environment. Nevertheless, the comprehension of biomass allocation processes in urban shrubs remains unclear, because most studies of urban ecology focus on tree species. This is an important gap of knowledge because a great part of urban vegetation is composed of shrubs and their association with trees have positive impacts in urban ecosystem services. In this study, we explored the ecological and potential selective pressure effects of an urbanization gradient on the biomass allocation patterns of aboveground organs of Turnera subulata, a widely distributed tropical shrub. We have demonstrated that, for certain reproductive organs, biomass allocation decreases in locations with higher urbanization. Unlike expected, the biomass of vegetative organs was not affected by urbanization, and we did not observe any effect of urbanization intensity on the variance in biomass allocation to vegetative and reproductive organs. We did not record urbanization-mediated trade-offs in biomass allocation for reproductive and vegetative organs. Instead, the biomass of these structures showed a positive relationship. Our data suggest that urbanization does not result in radical changes in biomass allocation of T. subulata, and neither in the variation of these traits. They indicate that the ability of T. subulata to thrive in urban environments may be associated with life history and morphological mechanisms. Our findings contribute to the understanding of shrub plant responses to urbanization and highlight urbanization as a potential factor in resource allocation differences for different structures and functions in plants living in these environments.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"879-892"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physiological roles of Arabidopsis MCA1 and MCA2 based on their dynamic expression patterns.","authors":"Miki Kubota, Kendo Mori, Hidetoshi Iida","doi":"10.1007/s10265-024-01575-8","DOIUrl":"10.1007/s10265-024-01575-8","url":null,"abstract":"<p><p>Determining the mechanisms by which plants sense and respond to mechanical stimuli is crucial for unraveling the detailed processes by which plants grow and develop. Mechanosensitive (MS) channels, including MCA1 and its paralog MCA2 in Arabidopsis thaliana, may be essential for these processes. Although significant progress has been made in elucidating the physiological roles of MS channels, comprehensive insights into their expression dynamics remain elusive. Here, we summarize recent advancements and new data on the spatiotemporal expression patterns of the MCA1 and MCA2 genes, revealing their involvement in various developmental processes. Then, we describe findings from our study, in which the expression profiles of MCA1 and MCA2 were characterized in different plant organs at various developmental stages through histochemical analyses and semiquantitative RT‒PCR. Our findings revealed that MCA1 and MCA2 are preferentially expressed in young tissues, suggesting their pivotal roles in processes such as cell division, expansion, and mechanosensing. Lastly, we discuss the differential expression patterns observed in reproductive organs and trichomes, hinting at their specialized functions in response to mechanical cues. Overall, this review provides valuable insights into the dynamic expression patterns of MCA1 and MCA2, paving the way for future research on the precise roles of these genes in planta.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"785-797"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafael Becker, Renan Pittella, Fernando H Calderon-Quispe, Júlia de Moraes Brandalise, Rosana Farias-Singer, Rodrigo Bustos Singer
{"title":"Reproductive biology as a tool to elucidate taxonomic delimitation: How different can two highly specialized subspecies of Parodia haselbergii (cactaceae) be?","authors":"Rafael Becker, Renan Pittella, Fernando H Calderon-Quispe, Júlia de Moraes Brandalise, Rosana Farias-Singer, Rodrigo Bustos Singer","doi":"10.1007/s10265-024-01555-y","DOIUrl":"10.1007/s10265-024-01555-y","url":null,"abstract":"<p><p>Reproductive isolation is one of the mechanisms of speciation. The two currently accepted subspecies of Parodia haselbergii (P. haselbergii subsp. haselbergii and P. haselbergii subsp. graessneri) were studied regarding flower traits, phenology, breeding systems and pollination. In addition, a principal component analysis with 18 floral characters and germination tests under controlled conditions were performed for both taxa. Pollination was studied in the field, in two localities of Southern Brazil. Pollinators were recorded through photos and film. Breeding system experiments were performed by applying controlled pollinations to plants excluded from pollinators. Both taxa mostly differ in asynchronous flowering periods, floral traits (including floral part measurements and nectar concentration) and pollinators. The flowers of both subspecies are functionally protogynous and perform remarkably long lifespans (≥ 15 days), both traits being novelties for Cactaceae. Whereas the reddish flowers of P. haselbergii subsp. haselbergii (nectar concentration: ca. 18%) are pollinated by hummingbirds of Thalurania glaucopis, the greenish flowers of P. haselbergii subsp. graessneri (nectar concentration: ca. 29%) are pollinated by Augochlora bees (Halictidae). Both subspecies are self-compatible, yet pollinator-dependent. The principal component analysis evidenced that both subspecies are separated, regarding flower traits. The seeds of both subspecies performed differently in the germination tests, but the best results were recovered at 20 °C and germination considerably decreased around 30 °C. In conclusion, all these results support that both taxa are in reproductive isolation, and can be treated as different species.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"863-875"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}