{"title":"Mechanical forces exerted on floral primordia with a novel experimental system modify floral development in Arabidopsis thaliana.","authors":"Akitoshi Iwamoto, Yuna Yoshioka, Ryoka Nakamura, Takeshi Yajima, Wakana Inoue, Kaho Nagakura","doi":"10.1007/s10265-024-01557-w","DOIUrl":"10.1007/s10265-024-01557-w","url":null,"abstract":"<p><p>Mechanical forces play a crucial role in plant development, including floral development. We previously reported that the phyllotactic variation in the staminate flowers of Ceratophyllum demersum may be caused by mechanical forces on the adaxial side of floral primordia, which may be a common mechanism in angiosperms. On the basis of this result, we developed a novel experimental system for analysis of the effects of mechanical forces on the floral meristem of Arabidopsis thaliana, aiming to induce morphological changes in flowers. In this experimental system, a micromanipulator equipped with a micro device, which is shaped to conform with the contour of the abaxial side of the young floral primordium, is used to exert contact pressure on a floral primordium. In the present study, we conducted contact experiments using this system and successfully induced diverse morphological changes during floral primordial development. In several primordia, the tip of the abaxial sepal primordium was incised with two or three lobes. A different floral primordium developed an additional sepal on the abaxial side (i.e., two abaxial sepals). Additionally, we observed the fusion of sepals in some floral primordia. These results suggest that mechanical forces have multiple effects on floral development, and changes in the tensile stress pattern in the cells of floral primordia are induced by the mechanical forces exerted with the micro device. These effects, in turn, lead to morphological changes in the floral primordia.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"763-771"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaime Gasca-Pineda, Brenda Monterrubio, Guillermo Sánchez-de la Vega, Erika Aguirre-Planter, Rafael Lira-Saade, Luis E Eguiarte
{"title":"Conservation genomics of the wild pumpkin Cucurbita radicans in Central Mexico: The influence of a changing environment on the genetic diversity and differentiation of a rare species.","authors":"Jaime Gasca-Pineda, Brenda Monterrubio, Guillermo Sánchez-de la Vega, Erika Aguirre-Planter, Rafael Lira-Saade, Luis E Eguiarte","doi":"10.1007/s10265-024-01552-1","DOIUrl":"10.1007/s10265-024-01552-1","url":null,"abstract":"<p><p>The genetic diversity found in natural populations is the result of the evolutionary forces in response to historical and contemporary factors. The environmental characteristics and geological history of Mexico promoted the evolution and diversification of plant species, including wild relatives of crops such as the wild pumpkins (Cucurbita). Wild pumpkin species are found in a variety of habitats, evidencing their capability to adapt to different environments. Despite the potential value of wild Cucurbita as a genetic reservoir for crops, there is a lack of studies on their genetic diversity. Cucurbita radicans is an endangered species threatened by habitat destruction leading to low densities in small and isolated populations. Here, we analyze Genotype by Sequencing genomic data of the wild pumpkin C. radicans to evaluate the influence of factors like isolation, demographic history, and the environment shaping the amount and distribution of its genetic variation. We analyzed 91 individuals from 14 localities along its reported distribution. We obtained 5,107 SNPs and found medium-high levels of genetic diversity and genetic structure distributed in four main geographic areas with different environmental conditions. Moreover, we found signals of demographic growth related to historical climatic shifts. Outlier loci analysis showed significant association with the environment, principally with precipitation variables. Also, the outlier loci displayed differential changes in their frequencies in response to future global climate change scenarios. Using the results of genetic structure, outlier loci and multivariate analyses of the environmental conditions, we propose priority localities for conservation that encompass most of the genetic diversity of C. radicans.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"799-813"},"PeriodicalIF":2.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of robbing intensity on reproductive success of Symphytum officinale (Boraginaceae).","authors":"Nurbiye Ehmet, Tai-Hong Wang, Yi-Ping Zhang, Xiang Zhao, Kun Sun, Qin-Zheng Hou","doi":"10.1007/s10265-024-01536-1","DOIUrl":"10.1007/s10265-024-01536-1","url":null,"abstract":"<p><p>The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation. In this study, Symphytum officinale was used to detect the effect of nectar robbers on pollinators under different robbing intensity as well as their effects on plant reproductive success. Six robbing levels and three bumblebees with mixed foraging behaviors were used to evaluate the effect of different robbing intensity on pollinator behavior, visitation rate, flower longevity and pollen deposition. Our results indicated that the robbing rate increased gradually with the proportion of robbed flowers, but which did not affect the frequency of legitimate visits. The increase of robbing rate promoted the corolla abscission, and then enhanced the self-pollen deposition, but which had no significant effect on cross-pollen deposition. These results indicate that the overall fitness of S. officinale was improved by combined self and cross-pollination modes when visited by both pollinators and nectar robbers simultaneously. Although nectar robbing is not uncommon, its consequences for pollination in the interaction web have not been well studied. Our results emphasize the significance of indirect impacts in mediating the adaptive outcomes of species interactions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"605-617"},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Morphological, genetic and ecological divergence in near-cryptic bryophyte species widespread in the Holarctic: the Dicranum acutifolium complex (Dicranales) revisited in the Alps.","authors":"Thomas Kiebacher, Péter Szövényi","doi":"10.1007/s10265-024-01534-3","DOIUrl":"10.1007/s10265-024-01534-3","url":null,"abstract":"<p><p>There is mounting evidence that reproductively isolated, but morphologically weakly differentiated species (so-called cryptic species) represent a substantial part of biological diversity, especially in bryophytes. We assessed the evolutionary history and ecological differentiation of a species pair, Dicranum brevifolium and D. septentrionale, which have overlapping ranges in the Holarctic. Despite their morphological similarity, we found similar genetic differentiation as between morphologically well-differentiated Dicranum species. Moreover, we detected gene tree discordance between plastid and nuclear markers, but neither of the two datasets resolved the two as sister species. The signal in trnL-trnF better reflects the morphological and ecological affinities and indicates a close relationship while ITS sequence data resolved the two taxa as phylogenetically distantly related. The discordance is probably unrelated to the ecological differentiation of D. septentrionale to colonise subneutral to alkaline substrates (vs. acidic in D. brevifolium), because this ability is rare in the genus and shared with D. acutifolium. This taxon is the closest relative of D. septentrionale according to the trnL-trnF data and does not share the discordance in ITS. We furthermore demonstrate that beside D. acutifolium, both D. septentrionale and D. brevifolium occur in the Alps but D. brevifolium is most likely rarer. Based on morphological analyses including factor analysis for mixed data of 45 traits we suggest treating the latter two as near-cryptic species and we recommend verifying morphological determinations molecularly.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"561-574"},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plastome structure, phylogeny and evolution of plastid genes in Reevesia (Helicteroideae, Malvaceae).","authors":"Li-Yang Geng, Tian-Yi Jiang, Xin Chen, Qiang Li, Jian-Hui Ma, Wen-Xiang Hou, Chen-Qian Tang, Qin Wang, Yun-Fei Deng","doi":"10.1007/s10265-024-01547-y","DOIUrl":"10.1007/s10265-024-01547-y","url":null,"abstract":"<p><p>Reevesia is an eastern Asian-eastern North American disjunction genus in the family Malvaceae s.l. and comprises approximately 25 species. The relationships within the genus are not well understood. Here, 15 plastomes representing 12 Reevesia species were compared, with the aim of better understanding the species circumscription and phylogenetic relationships within the genus and among genera in the family Malvaceae s.l. The 11 newly sequenced plastomes range between 161,532 and 161, 945 bp in length. The genomes contain 114 unique genes, 18 of which are duplicated in the inverted repeats (IRs). Gene content of these plastomes is nearly identical. All the protein-coding genes are under purifying selection in the Reevesia plastomes compared. The top ten hypervariable regions, SSRs, and the long repeats identified are potential molecular markers for future population genetic and phylogenetic studies. Phylogenetic analysis based on the whole plastomes confirmed the monophyly of Reevesia and a close relationship with Durio (traditional Bombacaceae) in subfamily Helicteroideae, but not with the morphologically similar genera Pterospermum and Sterculia (both of traditional Sterculiaceae). Phylogenetic relationships within Reevesia suggested that two species, R. pubescens and R. thyrsoidea, as newly defined, are not monophyletic. Six taxa, R. membranacea, R. xuefengensis, R. botingensis, R. lofouensis, R. longipetiolata and R. pycnantha, are suggested to be recognized.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"589-604"},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Henrique Goulart Dos Reis, Poliana Noemia da Silva, Evaristo Mauro de Castro, Fabricio José Pereira
{"title":"Tolerance to mild shading levels in cattail as related to increased photosynthesis and changes in its leaf area and anatomy.","authors":"Carlos Henrique Goulart Dos Reis, Poliana Noemia da Silva, Evaristo Mauro de Castro, Fabricio José Pereira","doi":"10.1007/s10265-024-01538-z","DOIUrl":"10.1007/s10265-024-01538-z","url":null,"abstract":"<p><p>Shading is an environmental factor that has been little investigated regarding its effects on emergent aquatic plants. Typha domingensis Pers. is an emergent macrophyte that demonstrates some plasticity for self-shading, and as it can shade other species in the same area, the effect of shading on its traits deserves further investigation. The objective of the present study was to evaluate the gas exchange, leaf anatomy, and growth of T. domingensis cultivated under increasing shading intensities. The plants were collected and propagated in a greenhouse, and the clones were subjected to four shading intensities: 0% (unshaded), 35%, 73%, and 83% shading created by black nets. Growth traits, clonal production, photosynthesis, transpiration, and leaf anatomy were evaluated. The 73% and 83% shading promoted the death of all plants, but all plants survived in the 35% and unshaded treatments. Compared with the unshaded treatment, the 35% shading treatment promoted a higher photosynthetic rate and greater transpiration, supporting increased growth and production of clones. The increase in the photosynthetic rate in the 35% shading was related to the increase in leaf area which increased the photosynthesis of the whole plant. The 73% and 83% treatments inhibited the development of photosynthetic parenchyma and stomata in T. domingensis, leading to a drastic reduction in photosynthesis and energy depletion. Therefore, T. domingensis does not tolerate intense shading, but its photosynthetic characteristics and growth are favored by mild shading, a factor that may be of great importance for its competitiveness and invasive behavior.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"627-640"},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhe Yang, Yuan Wang, Qirui Cheng, Xuan Zou, Yanxin Yang, Peng Li, Sijie Wang, Yue Su, Dongjing Yang, Ho Soo Kim, Xiaoyun Jia, Lingzhi Li, Sang-Soo Kwak, Wenbin Wang
{"title":"Overexpression of sweetpotato glutamylcysteine synthetase (IbGCS) in Arabidopsis confers tolerance to drought and salt stresses.","authors":"Zhe Yang, Yuan Wang, Qirui Cheng, Xuan Zou, Yanxin Yang, Peng Li, Sijie Wang, Yue Su, Dongjing Yang, Ho Soo Kim, Xiaoyun Jia, Lingzhi Li, Sang-Soo Kwak, Wenbin Wang","doi":"10.1007/s10265-024-01548-x","DOIUrl":"10.1007/s10265-024-01548-x","url":null,"abstract":"<p><p>Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T<sub>3</sub> Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"669-683"},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 Awards in the Journal of Plant Research.","authors":"Maki Katsuhara","doi":"10.1007/s10265-024-01549-w","DOIUrl":"10.1007/s10265-024-01549-w","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"545-546"},"PeriodicalIF":2.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Floral scents, specialized metabolites and stress-response activities in Heritiera fomes and Bruguiera gymnorrhiza from Sundarban mangrove ecosystem.","authors":"Ishita Paul, Sourav Manna, Ritwika Bera, Anup Kumar Paine, Deepanjan Mridha, Prakash Chandra Gorain, Tarit Roychowdhury, Mousumi Poddar Sarkar","doi":"10.1007/s10265-024-01527-2","DOIUrl":"10.1007/s10265-024-01527-2","url":null,"abstract":"<p><p>Floral biochemistry and stress physiology is an underexplored aspect of mangroves, which should be investigated as part of preservation and restoration efforts. A thriving true mangrove tree (Bruguiera gymnorrhiza (L.) Lamk.) and a threatened mangrove-associate species (Heritiera fomes Buch. Ham.) were studied in the Sundarban region of India for seasonal variations in floral odours, non-volatile phytochemicals, antioxidant enzyme activities, and surface water chemistry in surrounding habitat. Both species were found to exhibit significant differences in floral volatilomes, protein contents, antioxidant enzyme activities, total flavonoids, and total phenolic contents between spring and autumn blooms. The bird-pollinated flowers of B. gymnorrhiza also showed considerable seasonal differences in floral anthocyanin and proline contents, indicating vulnerability of the post-anthesis open flowers to environmental factors. Contrarily to previous findings, B. gymnorrhiza floral bouquet appeared to be enriched in various classes of volatiles - dominated by sulphurous compounds in bud stage and terpenoids in open stage. Floral anthocyanins, contributing to the striking colouration of the calyx, were found to comprise cyanidin and delphinidin derivatives. Other glycosides of cyanidin and delphinidin were detected in H. fomes flowers, contributing to visual guides to potential food rewards for pollinating insects. Floral tissue in H. fomes was found to be protected by densely overlapping layers of stellate trichomes containing sesquiterpenoids as phytoprotectants. Comparison of the two floral species suggested that H. fomes flowering is optimized to oligohaline (but not freshwater) vernal conditions; whereas B. gymnorrhiza blooms are adapted for biologically enriched (including abundant herbivores and microbial growth), mesohaline forest habitats.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"463-484"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139712478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulation of plant immunity and biotic interactions under phosphate deficiency.","authors":"Kanako Inoue, Natsuki Tsuchida, Yusuke Saijo","doi":"10.1007/s10265-024-01546-z","DOIUrl":"10.1007/s10265-024-01546-z","url":null,"abstract":"<p><p>Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"343-357"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}