Yucheng Hu, Gunnar Kusch, Damilola Adeleye, Susanne Siebentritt, Rachel Oliver
{"title":"TUNA-EBSD-CL correlative multi-microscopy study, on the example of Cu(In,Ga)S<sub>2</sub> solar cell absorber.","authors":"Yucheng Hu, Gunnar Kusch, Damilola Adeleye, Susanne Siebentritt, Rachel Oliver","doi":"10.1111/jmi.13393","DOIUrl":"https://doi.org/10.1111/jmi.13393","url":null,"abstract":"<p><p>Multi-microscopy offers significant benefits to the understanding of complex materials behaviour by providing complementary information from different properties. However, some characterisations may strongly influence other measurements in the same workflow. To acquire reliable and valid datasets, optimising multi-microscopy procedure is necessary. In present work, we studied the influence of the measurement order on the quality of multi-microscopy datasets. Multi-microscopy incorporating tunnelling current AFM (TUNA), electron backscatter diffraction (EBSD), and cathodoluminescence (CL) on a polycrystalline solar cell absorber, Cu(In,Ga)S<sub>2</sub> (CIGS), is used as an example. The investigation revealed potential characterisation-induced contaminations, such as surface oxidation and hydrocarbon layer coating, of the sample surface. Their subsequent influence on the measurement results of following correlation techniques was examined. To optimise the dataset quality, multi-microscopy should be carried out in TUNA-EBSD-CL order, from the most to the least surface sensitive techniques. With the optimised multi-microscopy measurement order on a CIGS absorber, we directly correlated the local changes in electrical and opto-electronic properties with the microstructure of grain boundaries (GBs). The described methodology may also provide insightful concepts for applying other AFM-SEM-based multi-microscopy on different semiconductor materials.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dario Luis Fernandez Ainaga, Teresa Roncal-Herrero, Martha Ilett, Zabeada Aslam, Cheng Cheng, James P Hitchcock, Olivier J Cayre, Nicole Hondow
{"title":"Native state structural and chemical characterisation of Pickering emulsions: A cryo-electron microscopy study.","authors":"Dario Luis Fernandez Ainaga, Teresa Roncal-Herrero, Martha Ilett, Zabeada Aslam, Cheng Cheng, James P Hitchcock, Olivier J Cayre, Nicole Hondow","doi":"10.1111/jmi.13391","DOIUrl":"https://doi.org/10.1111/jmi.13391","url":null,"abstract":"<p><p>Transmission electron microscopy can be used for the characterisation of a wide range of thin specimens, but soft matter and aqueous samples such as gels, nanoparticle dispersions, and emulsions will dry out and collapse under the microscope vacuum, therefore losing information on their native state and ultimately limiting the understanding of the sample. This study examines commonly used techniques in transmission electron microscopy when applied to the characterisation of cryogenically frozen Pickering emulsion samples. Oil-in-water Pickering emulsions stabilised by 3 to 5 nm platinum nanoparticles were cryogenically frozen by plunge-freezing into liquid ethane to retain the native structure of the system without inducing crystallisation of the droplet oil cores. A comparison between the droplet morphology following different sample preparation methods has confirmed the effectiveness of using plunge-freezing to prepare these samples. Scanning transmission electron microscopy imaging showed that dry droplets collapse under the microscope vacuum, changing their shape and size (average apparent diameter: ∼342 nm) compared to frozen samples (average diameter: ∼183 nm). Cryogenic electron tomography was used to collect additional information of the 3D shape and size of the emulsion droplets, and the position of the stabilising nanoparticles relative to the droplet surface. Cryogenic energy dispersive X-ray and electron energy loss spectroscopy were used to successfully obtain elemental data and generate elemental maps to identify the stabilising nanoparticles and the oil phase. Elemental maps generated from spectral data were used in conjunction with electron tomography to obtain 3D information of the oil phase in the emulsion droplets. Beam-induced damage to the ice was the largest limiting factor to the sample characterisation, limiting the effective imaging resolution and signal-to-noise ratio, though careful consideration of the imaging parameters used allowed for the characterisation of the samples presented in this study. Ultimately this study shows that cryo-methods are effective for the representative characterisation of Pickering emulsions.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Schmidt, Jonas Labode, Christoph Wrede, Yannick Regin, Jaan Toelen, Christian Mühlfeld
{"title":"Automated Euler number of the alveolar capillary network based on deep learning segmentation with verification by stereological methods.","authors":"Julia Schmidt, Jonas Labode, Christoph Wrede, Yannick Regin, Jaan Toelen, Christian Mühlfeld","doi":"10.1111/jmi.13390","DOIUrl":"https://doi.org/10.1111/jmi.13390","url":null,"abstract":"<p><p>Diseases like bronchopulmonary dysplasia (BPD) affect the development of the pulmonary vasculature, including the alveolar capillary network (ACN). Since pulmonary development is highly dependent on angiogenesis and microvascular maturation, ACN investigations are essential. Therefore, efficient methods are needed for quantitative comparative studies. Here, the suitability of deep learning (DL) for processing serial block-face scanning electron microscopic (SBF-SEM) data by generating ACN segmentations, 3D reconstructions and performing automated quantitative analyses based on them, was tested. Since previous studies revealed inefficient ACN segmentation as the limiting factor in the overall workflow, a 2D DL-based approach was used with existing data, aiming at the reduction of necessary manual interaction. Automated quantitative analyses based on completed segmentations were performed subsequently. The results were compared to stereological estimations, assessing segmentation quality and result reliability. It was shown that the DL-based approach was suitable for generating segmentations on SBF-SEM data. This approach generated more complete initial ACN segmentations than an established method, despite the limited amount of available training data and the use of a 2D rather than a 3D approach. The quality of the completed ACN segmentations was assessed as sufficient. Furthermore, quantitative analyses delivered reliable results about the ACN architecture, automatically obtained contrary to manual stereological approaches. This study demonstrated that ACN segmentation is still the part of the overall workflow that requires improvement regarding the reduction of manual interaction to benefit from available automated software tools. Nevertheless, the results indicated that it could be advantageous taking further efforts to implement a 3D DL-based segmentation approach. As the amount of analysed data was limited, this study was not conducted to obtain representative data about BPD-induced ACN alterations, but to highlight next steps towards a fully automated segmentation and evaluation workflow, enabling larger sample sizes and representative studies.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to special issue ‘12th International Botanical Microscopy Meeting’","authors":"Kim Findlay","doi":"10.1111/jmi.13388","DOIUrl":"10.1111/jmi.13388","url":null,"abstract":"","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 3","pages":"255-257"},"PeriodicalIF":1.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13388","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marketa Kolarikova, Barbora Hosikova, Jiri Tesarik, Katerina Langova, Hana Kolarova
{"title":"ApoNecV: A macro for cell death type differentiation.","authors":"Marketa Kolarikova, Barbora Hosikova, Jiri Tesarik, Katerina Langova, Hana Kolarova","doi":"10.1111/jmi.13386","DOIUrl":"https://doi.org/10.1111/jmi.13386","url":null,"abstract":"<p><p>The evaluation of large experimental datasets is a fundamental aspect of research in every scientific field. Streamlining this process can improve the reliability of results while making data analysis more efficient and faster to execute. In biomedical research it is often very important to determine the type of cell death after various treatments. Thus, differentiating between viable, apoptotic, and necrotic cells provide critical insights into the treatment efficacy, a key aspect in the field of drug development. Fluorescent microscopy is perceived as a widely used technique for cell metabolism assessment and can therefore be used to investigate treatment outcomes after staining samples with cell death detection kit. However, accurate evaluation of therapeutic results requires quantitative analysis, often necessitating extensive postprocessing of imaging data. In this study, we introduce a complementary tool designed as a macro for the Fiji platform, enabling the automated postprocessing of fluorescent microscopy images to accurately distinguish and quantify viable, apoptotic, and necrotic cells.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrastructure expansion microscopy: Enlarging our perspective on apicomplexan cell division.","authors":"Sofía Horjales, Florencia Sena, María E Francia","doi":"10.1111/jmi.13387","DOIUrl":"https://doi.org/10.1111/jmi.13387","url":null,"abstract":"<p><p>Apicomplexans, a large phylum of protozoan intracellular parasites, well known for their ability to invade and proliferate within host cells, cause diseases with major health and economic impacts worldwide. These parasites are responsible for conditions such as malaria, cryptosporidiosis, and toxoplasmosis, which affect humans and other animals. Apicomplexans exhibit complex life cycles, marked by diverse modes of cell division, which are closely associated with their pathogenesis. All the unique structural and evolutionary characteristics of apicomplexan parasites, the biology underlying life stage transitions, and the singular mechanisms of cell division alongside their associated biomedical relevance have captured the attention of parasitologists of all times. Traditional light and electron microscopy have set the fundamental foundations of our understanding of these parasites, including the distinction among their modes of cell division. This has been more recently complemented by microscopy advances through the implementation of superresolution fluorescence microscopy, and variants of electron microscopy, such as cryo-EM and tomography, revealing intricate details of organelles and cell division. Ultrastructure Expansion Microscopy has emerged as a transformative, accessible approach that enhances resolution by physically expanding samples isometrically, allowing nanoscale visualisation on standard light microscopes. In this work, we review the most recent contributions of U-ExM and its recent improvements and innovations, in providing unprecedented insights into apicomplexan ultrastructure and its associated mechanisms, focusing particularly on cell division. We highlight the power of U-ExM in combination with protein-specific labelling, in aiding the visualisation of long oversighted organelles and detailed insights into the assembly of parasite-specific structures, such as the conoid in Plasmodia, and the apical-basal axis in Toxoplasma, respectively, during new parasite assembly. Altogether, the contributions of U-ExM reveal conserved and unique structural features across species while nearing super resolution. The development of these methodologies and their combination with different technologies are crucial for advancing our mechanistic understanding of apicomplexan biology, offering new perspectives that may facilitate novel therapeutic strategies against apicomplexan-caused diseases.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Liang, Yuming Yao, Minjie Ye, Qinze Luo, Jiale Chu
{"title":"Automatic visual detection of activated sludge microorganisms based on microscopic phase contrast image optimisation and deep learning.","authors":"Dan Liang, Yuming Yao, Minjie Ye, Qinze Luo, Jiale Chu","doi":"10.1111/jmi.13385","DOIUrl":"https://doi.org/10.1111/jmi.13385","url":null,"abstract":"<p><p>The types and quantities of microorganisms in activated sludge are directly related to the stability and efficiency of sewage treatment systems. This paper proposes a sludge microorganism detection method based on microscopic phase contrast image optimisation and deep learning. Firstly, a dataset containing eight types of microorganisms is constructed, and an augmentation strategy based on single and multisamples processing is designed to address the issues of sample deficiency and uneven distribution. Secondly, a phase contrast image quality optimisation algorithm based on fused variance is proposed, which can effectively improve the standard deviation, entropy, and detection performance. Thirdly, a lightweight YOLOv8n-SimAM model is designed, which introduces a SimAM attention module to suppress the complex background interference and enhance attentions to the target objects. The lightweight of the network is realised using a detection head based on multiscale information fusion convolutional module. In addition, a new loss function IW-IoU is proposed to improve the generalisation ability and overall performance. Comparative and ablative experiments are conducted, demonstrating the great application potential for rapid and accurate detection of microbial targets. Compared to the baseline model, the proposed method improves the detection accuracy by 12.35% and hastens the running speed by 37.9 frames per second while evidently reducing the model size.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mounir El Hankouri, Marco Nousch, Aayush Poddar, Thomas Müller-Reichert, Gunar Fabig
{"title":"In situ quantification of ribosome number by electron tomography.","authors":"Mounir El Hankouri, Marco Nousch, Aayush Poddar, Thomas Müller-Reichert, Gunar Fabig","doi":"10.1111/jmi.13380","DOIUrl":"https://doi.org/10.1111/jmi.13380","url":null,"abstract":"<p><p>Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed. In this study, we developed a microscopic method to quantify the total number of ribosomes in hTERT-RPE-1 cells and in nematode cells from various tissues of Caenorhabditis elegans hermaphrodites. Using electron tomography of high-pressure frozen, freeze-substituted and resin-embedded samples, we determined that the ribosome number in hTERT-RPE-1 cells is in the same order of magnitude as biochemical measurements obtained via RNA capillary electrophoresis. As expected, control worms exhibited a higher number of ribosomes compared to RNA polymerase I A subunit (RPOA-1)-depleted worms in two out of three analysed tissue types. Our imaging-based approach complements established biochemical methods by enabling direct quantification of ribosome numbers in specific samples. This method offers a powerful tool for advancing our understanding of ribosome localisation and distribution in cells and tissues across diverse model systems.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}