从细胞到像素:设计生物图像分析管道的决策树。

IF 1.9 4区 工程技术 Q3 MICROSCOPY
Elnaz Fazeli, Robert Haase, Michael Doube, Kota Miura, David Legland
{"title":"从细胞到像素:设计生物图像分析管道的决策树。","authors":"Elnaz Fazeli, Robert Haase, Michael Doube, Kota Miura, David Legland","doi":"10.1111/jmi.70021","DOIUrl":null,"url":null,"abstract":"<p><p>Bioimaging has transformed our understanding of biological processes, yet extracting meaningful information from complex datasets remains a challenge, particularly for biologists without computational expertise. This paper proposes a simple general approach, to help identify which image analysis methods could be relevant for a given image dataset. We first categorise structures commonly observed in bioimage data into different types related to image analysis domains. Based on these types, we provide a list of methods adapted to the quantification of images from each category. Our approach includes illustrative examples and a visual flowchart, to help researchers define analysis objectives clearly. By understanding the diversity of bioimage structures and linking them with appropriate analysis approaches, the framework empowers researchers to navigate bioimage datasets more efficiently. It also aims to foster a common language between researchers and analysts, thereby enhancing mutual understanding and facilitating effective communication.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From cells to pixels: A decision tree for designing bioimage analysis pipelines.\",\"authors\":\"Elnaz Fazeli, Robert Haase, Michael Doube, Kota Miura, David Legland\",\"doi\":\"10.1111/jmi.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioimaging has transformed our understanding of biological processes, yet extracting meaningful information from complex datasets remains a challenge, particularly for biologists without computational expertise. This paper proposes a simple general approach, to help identify which image analysis methods could be relevant for a given image dataset. We first categorise structures commonly observed in bioimage data into different types related to image analysis domains. Based on these types, we provide a list of methods adapted to the quantification of images from each category. Our approach includes illustrative examples and a visual flowchart, to help researchers define analysis objectives clearly. By understanding the diversity of bioimage structures and linking them with appropriate analysis approaches, the framework empowers researchers to navigate bioimage datasets more efficiently. It also aims to foster a common language between researchers and analysts, thereby enhancing mutual understanding and facilitating effective communication.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.70021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.70021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

生物成像已经改变了我们对生物过程的理解,但从复杂的数据集中提取有意义的信息仍然是一个挑战,特别是对于没有计算专业知识的生物学家。本文提出了一个简单的通用方法,以帮助识别哪些图像分析方法可能与给定的图像数据集相关。我们首先将生物图像数据中常见的结构分类为与图像分析领域相关的不同类型。基于这些类型,我们提供了适合于每个类别的图像量化的方法列表。我们的方法包括说明性示例和可视化流程图,以帮助研究人员清楚地定义分析目标。通过理解生物图像结构的多样性,并将它们与适当的分析方法联系起来,该框架使研究人员能够更有效地浏览生物图像数据集。它还旨在培养研究人员和分析人员之间的共同语言,从而增进相互了解,促进有效沟通。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From cells to pixels: A decision tree for designing bioimage analysis pipelines.

Bioimaging has transformed our understanding of biological processes, yet extracting meaningful information from complex datasets remains a challenge, particularly for biologists without computational expertise. This paper proposes a simple general approach, to help identify which image analysis methods could be relevant for a given image dataset. We first categorise structures commonly observed in bioimage data into different types related to image analysis domains. Based on these types, we provide a list of methods adapted to the quantification of images from each category. Our approach includes illustrative examples and a visual flowchart, to help researchers define analysis objectives clearly. By understanding the diversity of bioimage structures and linking them with appropriate analysis approaches, the framework empowers researchers to navigate bioimage datasets more efficiently. It also aims to foster a common language between researchers and analysts, thereby enhancing mutual understanding and facilitating effective communication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信