Dun Wu, Jianghao Wei, Shoule Zhao, Lin Sun, Yunfeng Li
{"title":"基于原子力显微镜(AFM)、扫描电镜(SEM)和LP-N2GA的不同等级煤表面纳米级孔隙形态自动识别与定量","authors":"Dun Wu, Jianghao Wei, Shoule Zhao, Lin Sun, Yunfeng Li","doi":"10.1111/jmi.70028","DOIUrl":null,"url":null,"abstract":"<p><p>The pore structure characteristics of coal are crucial for coalbed methane adsorption and migration, carbon storage, and safety in deep coal mining. Although traditional methods can detect pore volume and distribution, they are limited in analysing pore morphology and surface properties. This study employs multiscale techniques including AFM (Atomic force microscopy), SEM (Scanning electron microscopy), and LP-N<sub>2</sub>GA (Low-Pressure nitrogen gas adsorption) to systematically analyse the impact of coal rank changes on pore structure and its evolutionary process, covering coals from medium-volatile to low-volatile bituminous and anthracite coals. AFM reveals the three-dimensional morphology and quantitative parameters of nanopores, SEM observes meso- and micropore structures, and LP-N<sub>2</sub>GA verifies pore size distribution. As coal rank increases, surface roughness decreases significantly, the number of pores increases, the average pore diameter decreases, pore morphology transforms from irregular to circular, and porosity increases. Specifically, as the rank of coal increases, the number of nanoring structures rises, while their diameters decrease. Changes in coal rank profoundly affect the nanoring structure, consistent with the evolutionary trend of surface morphology. The combination of AFM and LP-N<sub>2</sub>GA reveals the role of micropores in gas adsorption. This research not only provides a new perspective for understanding the influence of coal rank changes on pore structure characteristics but also offers a theoretical foundation for coalbed methane development, geological sequestration of carbon dioxide, design of coal-based functional materials, and coal mine safety prevention and control.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic identification and quantification of surface nanoscale pore morphology in coals of different ranks based on AFM, SEM and LP-N<sub>2</sub>GA.\",\"authors\":\"Dun Wu, Jianghao Wei, Shoule Zhao, Lin Sun, Yunfeng Li\",\"doi\":\"10.1111/jmi.70028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pore structure characteristics of coal are crucial for coalbed methane adsorption and migration, carbon storage, and safety in deep coal mining. Although traditional methods can detect pore volume and distribution, they are limited in analysing pore morphology and surface properties. This study employs multiscale techniques including AFM (Atomic force microscopy), SEM (Scanning electron microscopy), and LP-N<sub>2</sub>GA (Low-Pressure nitrogen gas adsorption) to systematically analyse the impact of coal rank changes on pore structure and its evolutionary process, covering coals from medium-volatile to low-volatile bituminous and anthracite coals. AFM reveals the three-dimensional morphology and quantitative parameters of nanopores, SEM observes meso- and micropore structures, and LP-N<sub>2</sub>GA verifies pore size distribution. As coal rank increases, surface roughness decreases significantly, the number of pores increases, the average pore diameter decreases, pore morphology transforms from irregular to circular, and porosity increases. Specifically, as the rank of coal increases, the number of nanoring structures rises, while their diameters decrease. Changes in coal rank profoundly affect the nanoring structure, consistent with the evolutionary trend of surface morphology. The combination of AFM and LP-N<sub>2</sub>GA reveals the role of micropores in gas adsorption. This research not only provides a new perspective for understanding the influence of coal rank changes on pore structure characteristics but also offers a theoretical foundation for coalbed methane development, geological sequestration of carbon dioxide, design of coal-based functional materials, and coal mine safety prevention and control.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.70028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.70028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Automatic identification and quantification of surface nanoscale pore morphology in coals of different ranks based on AFM, SEM and LP-N2GA.
The pore structure characteristics of coal are crucial for coalbed methane adsorption and migration, carbon storage, and safety in deep coal mining. Although traditional methods can detect pore volume and distribution, they are limited in analysing pore morphology and surface properties. This study employs multiscale techniques including AFM (Atomic force microscopy), SEM (Scanning electron microscopy), and LP-N2GA (Low-Pressure nitrogen gas adsorption) to systematically analyse the impact of coal rank changes on pore structure and its evolutionary process, covering coals from medium-volatile to low-volatile bituminous and anthracite coals. AFM reveals the three-dimensional morphology and quantitative parameters of nanopores, SEM observes meso- and micropore structures, and LP-N2GA verifies pore size distribution. As coal rank increases, surface roughness decreases significantly, the number of pores increases, the average pore diameter decreases, pore morphology transforms from irregular to circular, and porosity increases. Specifically, as the rank of coal increases, the number of nanoring structures rises, while their diameters decrease. Changes in coal rank profoundly affect the nanoring structure, consistent with the evolutionary trend of surface morphology. The combination of AFM and LP-N2GA reveals the role of micropores in gas adsorption. This research not only provides a new perspective for understanding the influence of coal rank changes on pore structure characteristics but also offers a theoretical foundation for coalbed methane development, geological sequestration of carbon dioxide, design of coal-based functional materials, and coal mine safety prevention and control.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.