Tristan Manchester, Adam Anders, Julio Spadotto, Hannah Eccleston, William Beavan, Hugues Arcis, Brian J Connolly
{"title":"利用改进的非原位断层扫描数据进行原位同步加速器x射线计算机断层扫描的分割。","authors":"Tristan Manchester, Adam Anders, Julio Spadotto, Hannah Eccleston, William Beavan, Hugues Arcis, Brian J Connolly","doi":"10.1111/jmi.70032","DOIUrl":null,"url":null,"abstract":"<p><p>In situ synchrotron X-ray computed tomography enables dynamic material studies. However, automated segmentation remains challenging due to complex imaging artefacts - like ring and cupping effects - and limited training data. We present a methodology for deep learning-based segmentation by transforming high-quality ex situ laboratory data to train models for segmentation of in situ synchrotron data, demonstrated through a metal oxide dissolution study. Using a modified SegFormer architecture, our approach achieves segmentation performance (94.7% IoU) that matches human inter-annotator reliability (94.6% IoU). This indicates the model has reached the practical upper bound for this task, while reducing processing time by 2 orders of magnitude per 3D dataset compared to manual segmentation. The method maintains robust performance over significant morphological changes during experiments, despite training only on static specimens. This methodology can be readily applied to diverse materials systems, enabling the efficient analysis of the large volumes of time-resolved tomographic data generated in typical in situ experiments across scientific disciplines.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging modified ex situ tomography data for segmentation of in situ synchrotron X-ray computed tomography.\",\"authors\":\"Tristan Manchester, Adam Anders, Julio Spadotto, Hannah Eccleston, William Beavan, Hugues Arcis, Brian J Connolly\",\"doi\":\"10.1111/jmi.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In situ synchrotron X-ray computed tomography enables dynamic material studies. However, automated segmentation remains challenging due to complex imaging artefacts - like ring and cupping effects - and limited training data. We present a methodology for deep learning-based segmentation by transforming high-quality ex situ laboratory data to train models for segmentation of in situ synchrotron data, demonstrated through a metal oxide dissolution study. Using a modified SegFormer architecture, our approach achieves segmentation performance (94.7% IoU) that matches human inter-annotator reliability (94.6% IoU). This indicates the model has reached the practical upper bound for this task, while reducing processing time by 2 orders of magnitude per 3D dataset compared to manual segmentation. The method maintains robust performance over significant morphological changes during experiments, despite training only on static specimens. This methodology can be readily applied to diverse materials systems, enabling the efficient analysis of the large volumes of time-resolved tomographic data generated in typical in situ experiments across scientific disciplines.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.70032\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.70032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Leveraging modified ex situ tomography data for segmentation of in situ synchrotron X-ray computed tomography.
In situ synchrotron X-ray computed tomography enables dynamic material studies. However, automated segmentation remains challenging due to complex imaging artefacts - like ring and cupping effects - and limited training data. We present a methodology for deep learning-based segmentation by transforming high-quality ex situ laboratory data to train models for segmentation of in situ synchrotron data, demonstrated through a metal oxide dissolution study. Using a modified SegFormer architecture, our approach achieves segmentation performance (94.7% IoU) that matches human inter-annotator reliability (94.6% IoU). This indicates the model has reached the practical upper bound for this task, while reducing processing time by 2 orders of magnitude per 3D dataset compared to manual segmentation. The method maintains robust performance over significant morphological changes during experiments, despite training only on static specimens. This methodology can be readily applied to diverse materials systems, enabling the efficient analysis of the large volumes of time-resolved tomographic data generated in typical in situ experiments across scientific disciplines.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.