{"title":"An immunohistochemical protocol for visualizing adrenergic receptor subtypes in the rhesus macaque hippocampus","authors":"Kelsey E. McDermott , Carol A. Barnes","doi":"10.1016/j.jneumeth.2025.110410","DOIUrl":"10.1016/j.jneumeth.2025.110410","url":null,"abstract":"<div><h3>Background</h3><div>The noradrenergic system is an important modulatory system in the brain, and dysfunction in this system is implicated in multiple neurodegenerative diseases. The study of this system in neuronal tissues relies on the availability of specific antibodies but to date no protocol exists for immunohistological visualization of α1, α2, and β adrenergic receptors in rhesus macaques.</div></div><div><h3>New method</h3><div>Here, we test the ability of various commercially available antibodies to detect these receptors in the primate brain and develop a protocol for visualization of receptors alongside noradrenergic axons and glial and vascular cells that interact with the noradrenergic system.</div></div><div><h3>Results</h3><div>Of the eleven primary antibodies for adrenergic receptors tested, five did not produce staining at any concentration. The remaining six antibodies underwent a preadsorption protocol to determine specificity of the antibody to its’ immunogen sequence. Two antibodies failed this test, indicating they were binding to other targets in the brain. We then determined optimum concentrations for the remaining four antibodies. Additionally, we develop an immunofluorescence protocol that allows for the visualization of each AR - α1, α2a, or β1 – along with adrenergic axons as well as with glia and vasculature.</div></div><div><h3>Comparison with existing methods</h3><div>While protocols exist for visualizing receptors in rodents, this is the first protocol for use in nonhuman primates.</div></div><div><h3>Conclusions</h3><div>Seven out of the eleven tested antibodies were inaccurate, highlighting the importance of comprehensive testing. The stringent tests conducted here suggest that some commercially available antibodies can reliably detect adrenergic receptor subtypes in nonhuman primate tissue.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"418 ","pages":"Article 110410"},"PeriodicalIF":2.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taylor B. Wise , Victoria L. Templer , Rebecca D. Burwell
{"title":"The 3D Vertical Maze: A new model system for studying the interactions between social and spatial cognition","authors":"Taylor B. Wise , Victoria L. Templer , Rebecca D. Burwell","doi":"10.1016/j.jneumeth.2025.110414","DOIUrl":"10.1016/j.jneumeth.2025.110414","url":null,"abstract":"<div><h3>Background</h3><div>Evolutionary biology and neuroscience evidence supports the theory that spatial cognition and social cognition share neural mechanisms. Although rodent models are widely used to study either spatial or social cognition, few studies have explored the interactions between these domains, possibly because measures across tasks differ.</div></div><div><h3>New method</h3><div>We introduce the automated 3-dimensional Vertical Maze (VM), a new model system designed to measure multiple aspects of spatial and social behavior and cognition. The VM features a standard 3-chamber maze positioned above three-level columns allowing for presentation of conspecifics as either demonstrators or discriminative stimuli at different spatial distances and different social familiarity levels. The presentation of demonstrators below the perforated floors of the 3-chamber level encourages rats to use multisensory cues to judge distance, direction, and social identity of conspecifics.</div></div><div><h3>Results</h3><div>Using the VM, we found that rats showed normal social preferences whether demonstrators were presented at the near, middle, or far distance. In an operant spatial distance discrimination task, rats readily learned to associate a reward with the spatial distance of a demonstrator.</div></div><div><h3>Comparison with existing methods</h3><div>This new paradigm advances the field by permitting the presentation of social information (conspecifics) at different spatial distances allowing more direct comparison of behavioral measures across social and spatial information domains.</div></div><div><h3>Conclusions</h3><div>The VM is an effective tool for studying both spatial and social cognition opening new avenues for investigating the neural and cognitive foundations of spatial and social behavior and for exploring the possibility of shared mechanisms across these cognitive domains.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"418 ","pages":"Article 110414"},"PeriodicalIF":2.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dorian Röders , Jesus J. Ballesteros , Celil Semih Sevincik , Sara Santos Silva , Luca Bürgel , Bilal Abbas , Yannik Neukirch , Roland Pusch , Jonas Rose
{"title":"A 3D-printed modular implant for extracellular recordings","authors":"Dorian Röders , Jesus J. Ballesteros , Celil Semih Sevincik , Sara Santos Silva , Luca Bürgel , Bilal Abbas , Yannik Neukirch , Roland Pusch , Jonas Rose","doi":"10.1016/j.jneumeth.2025.110407","DOIUrl":"10.1016/j.jneumeth.2025.110407","url":null,"abstract":"<div><h3>Background</h3><div>Chronic implants for neural data acquisition must meet several criteria that can be difficult to integrate. Surgical procedures should be as short as possible to reduce unnecessary stress and risks, yet implants must precisely fit to the location of interest and last long periods of time. Implants also must be lightweight but stable enough to withstand the subject’s daily life and experimental needs.</div></div><div><h3>New method</h3><div>Here we introduce a novel, 3D-printed and open-source modular implant. Our modular design philosophy allows altering parts of the implant either before implantation or later, during the course of experiments. The implant consists of a base individually designed, for instance using an MRI of the subject for an exact skull fit. This base remains permanently on the subject and can contain multiple sites for craniotomies, microdrives and head stage connectors. All movable components (drives with probes, connectors, reference/ground points) are securely screwed onto this base, allowing for replacement and recovery.</div></div><div><h3>Results</h3><div>After implantation of the bases, self-made microdrives carrying commercial silicon probes were implanted. Once the experimental goals were achieved, they were recovered for further use. Should the quality of the data decrease during the experimental period, the components were replaced, allowing for the experimentation to continue. On an exemplary free-moving subject, under wireless electrophysiological data collection, we reliably obtained single and multi unit data up to 86 days after a silicon probe implantation. In this specific case, after this time we successfully substituted the components and collected similar quality data for additional 11 days.</div></div><div><h3>Comparison with existing methods</h3><div>Our approach allows to remove, reposition and exchange components during minimally invasive procedures, not requiring new incisions, bone drilling (unless new craniotomies are planned sequentially) or removal of dental cement or glue structures. Splitting complex implantations into multiple shorter procedures reduce the risks inherent to long surgical procedures. A careful plan of action allows to re-use and reduce subject's usage.</div></div><div><h3>Conclusion</h3><div>This novel approach reduces the duration of surgical procedures. It allows for minimally invasive follow-up procedures, including component replacements between experiments. The design is stable, proven to yield good results, in a very long-term period. This approach increases the chance of successful long experimental paradigms, and help reducing the use of subjects.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"418 ","pages":"Article 110407"},"PeriodicalIF":2.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V.H. Kuang , C.S. Skoven , S. Arvin , L.M. Fitting , K.R. Drasbek , B. Hansen , D. Orlowski , J.C.H. Sørensen
{"title":"A large animal model for focal stroke: Photothrombotic lesion in the cortex of Danish Landrace pigs","authors":"V.H. Kuang , C.S. Skoven , S. Arvin , L.M. Fitting , K.R. Drasbek , B. Hansen , D. Orlowski , J.C.H. Sørensen","doi":"10.1016/j.jneumeth.2025.110408","DOIUrl":"10.1016/j.jneumeth.2025.110408","url":null,"abstract":"<div><h3>Background</h3><div>Preclinical rodent models have been crucial for studying stroke pathophysiology. However, the limited success of translating these ischemic stroke models to human trials highlights their shortcomings. To address this, we developed a large animal porcine stroke model using Rose Bengal (RB) for photothrombotic ischemic lesioning.</div></div><div><h3>New method</h3><div>Four Danish Landrace pigs (4–6 months old, 36–40 kg) were used in this proof-of-concept study. RB (20 mg/kg) was infused via a central venous catheter, and lesion sites in the motor and visual cortices were targeted using MRI, a stereotactic frame, and fiducial markers. Surgical access was achieved through burr holes, followed by green light exposure through the dura onto the neocortex for 30 mins. After recovery, the pigs underwent motor behavior assessment, euthanasia, and histological and MRI analyses.</div></div><div><h3>Results</h3><div>Post-stroke, significant motor deficits were observed. Three pigs were hemiparetic and immobile, while one showed reduced exploratory behavior (42 % post-stroke vs. 81 % pre-stroke) and peripheral sniffing (∼0 % vs. 9 %). Histological analysis revealed ischemic changes, including nuclear shrinkage, pyknosis, and infarct zones with blood clots. Lesion size ranged from 1 mm² to 18 mm². Ex vivo diffusion MRI showed increased mean kurtosis in three pigs, confirming microstructural changes.</div></div><div><h3>Comparison with existing methods and conclusions</h3><div>The model produced behavioral and histological characteristics in pigs, which have gyrencephalic brains, large intracranial vessel diameters, and a high white-to-gray matter ratio, similar to those observed in other animals and traditional models. This model can produce a reproducible isolated cortical lesion using stereotactic coordinates and/or 3D imaging.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"418 ","pages":"Article 110408"},"PeriodicalIF":2.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring temporal information dynamics in Spiking Neural Networks: Fast Temporal Efficient Training","authors":"Changjiang Han , Li-Juan Liu , Hamid Reza Karimi","doi":"10.1016/j.jneumeth.2025.110401","DOIUrl":"10.1016/j.jneumeth.2025.110401","url":null,"abstract":"<div><h3>Background:</h3><div>Spiking Neural Networks (SNNs) hold significant potential in brain simulation and temporal data processing. While recent research has focused on developing neuron models and leveraging temporal dynamics to enhance performance, there is a lack of explicit studies on neuromorphic datasets. This research aims to address this question by exploring temporal information dynamics in SNNs.</div></div><div><h3>New Method:</h3><div>To quantify the dynamics of temporal information during training, this study measures the Fisher information in SNNs trained on neuromorphic datasets. The information centroid is calculated to analyze the influence of key factors, such as the parameter <span><math><mi>k</mi></math></span>, on temporal information dynamics.</div></div><div><h3>Results:</h3><div>Experimental results reveal that the information centroid exhibits two distinct behaviors: stability and fluctuation. This study terms this phenomenon the Stable Information Centroid (SIC), which is closely related to the parameter <span><math><mi>k</mi></math></span>. Based on these findings, we propose the Fast Temporal Efficient Training (FTET) algorithm.</div></div><div><h3>Comparison with Existing Methods:</h3><div>Firstly, the method proposed in this paper does not require the introduction of additional complex training techniques. Secondly, it can reduce the computational load by 30% in the final 50 epochs. However, the drawback is the issue of slow convergence during the early stages of training.</div></div><div><h3>Conclusion:</h3><div>This study reveals that the learning processes of SNNs vary across different datasets, providing new insights into the mechanisms of human brain learning. A limitation is the restricted sample size, focusing only on a few datasets and image classification tasks. The code is available at <span><span>https://github.com/gtii123/fast-temporal-efficient-training</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110401"},"PeriodicalIF":2.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimally invasive electrocorticography (ECoG) recording in common marmosets","authors":"Silvia Spadacenta, Peter W. Dicke, Peter Thier","doi":"10.1016/j.jneumeth.2025.110409","DOIUrl":"10.1016/j.jneumeth.2025.110409","url":null,"abstract":"<div><h3>Background</h3><div>Electrocorticography (ECoG) provides a valuable compromise between spatial and temporal resolution for recording brain activity with excellent signal quality, crucial for presurgical epilepsy mapping and advancing neuroscience, including brain-machine interface development. ECoG is particularly effective in the common marmoset (Callithrix jacchus), whose lissencephalic (unfolded) brain surface provides broad cortical access. One of the key advantages of ECoG recordings is the ability to study interactions between distant brain regions. Traditional methods rely on large electrode arrays, necessitating extensive trepanations and a trade-off between size and electrode spacing.</div></div><div><h3>New method</h3><div>This study introduces a refined ECoG technique for examining interactions among multiple cortical areas in marmosets, combining circumscribed trepanations with high-density electrode arrays at specific sites of interest.</div></div><div><h3>Comparison with existing methods</h3><div>Standard ECoG techniques typically require large electrode arrays and extensive trepanation, which heighten surgical risks and the likelihood of infection, while potentially compromising spatial resolution. In contrast, our method facilitates detailed and stable recordings across multiple cortical areas with minimized invasiveness and reduced complication risks, all while preserving high spatial resolution.</div></div><div><h3>Results</h3><div>Two adult marmosets underwent ECoG implantation in frontal, temporal, and parietal regions. Postoperative monitoring confirmed rapid recovery, long-term health, and stable, high-quality neural recordings during various behavioral tasks.</div></div><div><h3>Conclusions</h3><div>This refined ECoG method enhances the study of cortical interactions in marmosets while minimizing surgical invasiveness and complication risks. It offers potential for broader application in other species and opens new avenues for long-term data collection, ultimately advancing both neuroscience and brain-machine interface research.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110409"},"PeriodicalIF":2.7,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of focused ultrasound and dynamic imaging control system for targeted neuro-modulation","authors":"K.M. Karthick Raghunath , Surbhi Bhatia Khan , T.R. Mahesh , Ahlam Almusharraf , Rubal Jeet , Mohammad Tabrez Quasim , Azeem Irshad , Fatima Asiri","doi":"10.1016/j.jneumeth.2025.110391","DOIUrl":"10.1016/j.jneumeth.2025.110391","url":null,"abstract":"<div><h3>Background</h3><div>Transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (tMS) have received widespread clinical use as techniques within a Non-Invasive Brain Stimulation (NIBS) domain, whose primary focus is modulation of neural activity to treat neurological and psychiatric disorders. Despite these advancements, precision targeting of deep brain structures remains a challenge faced with great need of another innovation that will improve precision and reduce the risks. A novel methodology integrating transcranial Focused Ultrasound (tFUS) with real-time functional imaging modalities, including functional Magnetic Resonance Imaging (fMRI) and Near-Infra-Red Spectroscopy (NIRS), is proposed in this study as the Integrated Focused Ultrasound and Real-Time Imaging Control System (IFURTICS).</div></div><div><h3>Principle results</h3><div>Closed loop algorithms employed by IFURTICS allow it to dynamically vary stimulation parameters in response to real-time feedback on neural activity, allowing for accurate targeting of sensitive networks while minimizing deleterious collateral effects.</div></div><div><h3>Conclusions</h3><div>Clinical trials using standard datasets of fMRI and NIRS have proved that the approach improved targeting accuracy by ∼18 %, reduced off-target effects by ∼55 % and enhanced therapeutic outcomes by 50 % over current methods, suggesting its potential as a transformative approach to precision neuro-modulation.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110391"},"PeriodicalIF":2.7,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minjie Wang , Yuan Zhang , Aiping Wang , Zhongxue Gan , Lihua Zhang , Xiaoyang Kang
{"title":"Soft neural interface with color adjusted PDMS encapsulation layer for spinal cord stimulation","authors":"Minjie Wang , Yuan Zhang , Aiping Wang , Zhongxue Gan , Lihua Zhang , Xiaoyang Kang","doi":"10.1016/j.jneumeth.2025.110402","DOIUrl":"10.1016/j.jneumeth.2025.110402","url":null,"abstract":"<div><h3>Background</h3><div>Spinal cord stimulation (SCS) plays a crucial role in treating various neurological diseases. Utilizing soft spinal cord electrodes in SCS allows for a better fit with the physiological structure of the spinal cord and reduces tissue damage. Polydimethylsiloxane (PDMS) has emerged as an ideal material for soft bioelectronics. However, micromachining soft PDMS bioelectronics devices with low thermal effects and high uniformity remains challenging.</div></div><div><h3>New method</h3><div>Here, we demonstrated a fully laser-micromachined soft neural interface for SCS. The native and color adjusted PDMS with variable absorbance characteristics were investigated in laser processing. In addition, we systematically evaluated the impact of electrode sizes on the electrochemical performance of neural interface. By fitting the equivalent circuit model, the electrochemical process of neural interface was revealed and the performance of the electrode was evaluated. The biocompatibility of color adjusted PDMS was confirmed by cytotoxicity assays. Finally, we validated the neural interface in mice.</div></div><div><h3>Results</h3><div>Color adjusted PDMS has good biocompatibility and can significantly reduce the damage caused by thermal effects, enhancing the electrochemical performance of bioelectronic devices. The soft neural interface with color adjusted PDMS encapsulation layer can activate the motor function safely.</div></div><div><h3>Comparison with existing methods</h3><div>The fully laser-micromachined soft neural interface was proposed for the first time. Compared with existing methods, this method showed low thermal effects, high uniformity, and could be easily scaled up.</div></div><div><h3>Conclusions</h3><div>The fully laser-micromachined soft neural interface device with color adjusted PDMS encapsulation layer shows great promise for applications in SCS.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110402"},"PeriodicalIF":2.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143472567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eleni Tzekaki , Chryssa Bekiari , Anastasia Pantazaki , Maria Tsantarliotou , Magda Tsolaki , Sophia N. Lavrentiadou
{"title":"A new protocol for the development of organoids based on molecular mechanisms in the developing newborn rat brain: Prospective applications in the study of Alzheimer’s disease","authors":"Eleni Tzekaki , Chryssa Bekiari , Anastasia Pantazaki , Maria Tsantarliotou , Magda Tsolaki , Sophia N. Lavrentiadou","doi":"10.1016/j.jneumeth.2025.110404","DOIUrl":"10.1016/j.jneumeth.2025.110404","url":null,"abstract":"<div><h3>Background</h3><div>Brain organoids have emerged as powerful models for studying brain development and neurological disorders</div></div><div><h3>Comparison with existing methods</h3><div>Current models rely on stem cell isolation and differentiation using different growth factors. Thus, their composition varies according to the protocol followed.</div></div><div><h3>New method</h3><div>We developed a simple protocol to generate organoids from newborn rat whole brain. It is a one-step procedure that yields organoids of consistent composition. The whole brains from 3-day old pups were digested enzymatically. All isolated cells were seeded in culture plates using a basement membrane extract (BME) matrix as a scaffold and cultured in the presence of the appropriate medium.</div></div><div><h3>Results</h3><div>Hematoxylin-eosin staining of 28-day-old cultured domes revealed their structural integrity, while immunohistochemistry confirmed the presence of neurons, astrocytes, microglia, and progenitor stem cells in the structures. To assess whether these organoids can serve as a model to study brain physiopathology, and in particular neurodegenerative diseases such as Alzheimer’s disease (AD), we determined how these organoids respond upon their exposure to lipopolysaccharides (LPS), a potent neuroinflammatory factor. LPS-induced amyloid precursor protein (APP), tau protein and glial fibrillary acidic protein (GFAP) expression. Moreover, the intracellular levels of IL-1β and the extracellular levels of amyloid-beta (Aβ) were also elevated.</div></div><div><h3>Conclusions</h3><div>Therefore, this simple protocol results in the generation of functional brain organoids with a consistent structure, that requires no use of varying factors that may affect the structure and function of the produced organoids, thus providing a valuable tool for the study of the physiopathology of neurodegenerative disorders.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110404"},"PeriodicalIF":2.7,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William D. Reeves , Ishfaque Ahmed , Brooke S. Jackson , Wenwu Sun , Celestine F. Williams , Catherine L. Davis , Jennifer E. McDowell , Nathan E. Yanasak , Shaoyong Su , Qun Zhao
{"title":"fMRI-based data-driven brain parcellation using independent component analysis","authors":"William D. Reeves , Ishfaque Ahmed , Brooke S. Jackson , Wenwu Sun , Celestine F. Williams , Catherine L. Davis , Jennifer E. McDowell , Nathan E. Yanasak , Shaoyong Su , Qun Zhao","doi":"10.1016/j.jneumeth.2025.110403","DOIUrl":"10.1016/j.jneumeth.2025.110403","url":null,"abstract":"<div><h3>Background</h3><div>Studies using functional magnetic resonance imaging (fMRI) broadly require a method of parcellating the brain into regions of interest (ROIs). Parcellations can be based on standardized brain anatomy, such as the Montreal Neurological Institute’s (MNI) 152 atlas, or an individual’s functional activity patterns, such as the Personode software.</div></div><div><h3>New method</h3><div>This work outlines and tests the independent component analysis (ICA)-based parcellation algorithm (IPA) when applied to a hypertension study (n = 48) that uses the independent components (ICs) output from group ICA (gICA) to build ROIs which are ideally spatially consistent and functionally homogeneous. After regression of ICs to all subjects, the IPA builds individualized parcellations while simultaneously obtaining a gICA-derived parcellation.</div></div><div><h3>Results</h3><div>ROI spatial consistency quantified by dice similarity coefficients (DSCs) show individualized parcellations exhibit mean DSCs of 0.69 ± 0.14. Functional homogeneity, calculated as mean Pearson correlation value of all voxels comprising a ROI, shows individualized parcellations with a mean of 0.30 ± 0.14 and gICA-derived parcellations’ mean of 0.38 ± 0.15.</div></div><div><h3>Comparison with existing method(s)</h3><div>Individualized Personode parcellations show decreased mean DSCs (0.43 ± 0.11) with the individualized parcellations, gICA-derived parcellations, and the MNI atlas having decreased homogeneity values of 0.28 ± 0.14, 0.31 ± 0.15, and 0.20 ± 0.11 respectively.</div></div><div><h3>Conclusions</h3><div>Results show that the IPA can more reliably define a ROI and does so with higher functional homogeneity. Given these findings, the IPA shows promise as a novel parcellation technique that could aid the analysis of fMRI data.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110403"},"PeriodicalIF":2.7,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143444971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}