Norma Patricia Silva-Beltrán, Stephanie A Boon, M Khalid Ijaz, Julie McKinney, Charles P Gerba
{"title":"Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants.","authors":"Norma Patricia Silva-Beltrán, Stephanie A Boon, M Khalid Ijaz, Julie McKinney, Charles P Gerba","doi":"10.1093/jimb/kuad036","DOIUrl":"10.1093/jimb/kuad036","url":null,"abstract":"<p><p>There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants.</p><p><strong>One-sentence summary: </strong>This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89718608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sylvia Kunakom, Hiroshi Otani, Daniel W Udwary, Drew T Doering, Nigel J Mouncey
{"title":"Cytochromes P450 involved in bacterial RiPP biosyntheses.","authors":"Sylvia Kunakom, Hiroshi Otani, Daniel W Udwary, Drew T Doering, Nigel J Mouncey","doi":"10.1093/jimb/kuad005","DOIUrl":"https://doi.org/10.1093/jimb/kuad005","url":null,"abstract":"<p><p>Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large class of secondary metabolites that have garnered scientific attention due to their complex scaffolds with potential roles in medicine, agriculture, and chemical ecology. RiPPs derive from the cleavage of ribosomally synthesized proteins and additional modifications, catalyzed by various enzymes to alter the peptide backbone or side chains. Of these enzymes, cytochromes P450 (P450s) are a superfamily of heme-thiolate proteins involved in many metabolic pathways, including RiPP biosyntheses. In this review, we focus our discussion on P450 involved in RiPP pathways and the unique chemical transformations they mediate. Previous studies have revealed a wealth of P450s distributed across all domains of life. While the number of characterized P450s involved in RiPP biosyntheses is relatively small, they catalyze various enzymatic reactions such as C-C or C-N bond formation. Formation of some RiPPs is catalyzed by more than one P450, enabling structural diversity. With the continuous improvement of the bioinformatic tools for RiPP prediction and advancement in synthetic biology techniques, it is expected that further cytochrome P450-mediated RiPP biosynthetic pathways will be discovered.</p><p><strong>Summary: </strong>The presence of genes encoding P450s in gene clusters for ribosomally synthesized and post-translationally modified peptides expand structural and functional diversity of these secondary metabolites, and here, we review the current state of this knowledge.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/fa/kuad005.PMC10124130.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9954485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Fungi as a commercial source of eumelanin: current understanding & prospects.","authors":"","doi":"10.1093/jimb/kuad032","DOIUrl":"10.1093/jimb/kuad032","url":null,"abstract":"","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/a3/kuad032.PMC10569374.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41203293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael A Cook, Daniel Pallant, Linda Ejim, Arlene D Sutherland, Xiaodong Wang, Jarrod W Johnson, Susan McCusker, Xuefei Chen, Maya George, Sommer Chou, Kalinka Koteva, Wenliang Wang, Christian Hobson, Dirk Hackenberger, Nicholas Waglechner, Obi Ejim, Tracey Campbell, Ricardo Medina, Lesley T MacNeil, Gerard D Wright
{"title":"Lessons from assembling a microbial natural product and pre-fractionated extract library in an academic laboratory.","authors":"Michael A Cook, Daniel Pallant, Linda Ejim, Arlene D Sutherland, Xiaodong Wang, Jarrod W Johnson, Susan McCusker, Xuefei Chen, Maya George, Sommer Chou, Kalinka Koteva, Wenliang Wang, Christian Hobson, Dirk Hackenberger, Nicholas Waglechner, Obi Ejim, Tracey Campbell, Ricardo Medina, Lesley T MacNeil, Gerard D Wright","doi":"10.1093/jimb/kuad042","DOIUrl":"10.1093/jimb/kuad042","url":null,"abstract":"<p><p>Microbial natural products are specialized metabolites that are sources of many bioactive compounds including antibiotics, antifungals, antiparasitics, anticancer agents, and probes of biology. The assembly of libraries of producers of natural products has traditionally been the province of the pharmaceutical industry. This sector has gathered significant historical collections of bacteria and fungi to identify new drug leads with outstanding outcomes-upwards of 60% of drug scaffolds originate from such libraries. Despite this success, the repeated rediscovery of known compounds and the resultant diminishing chemical novelty contributed to a pivot from this source of bioactive compounds toward more tractable synthetic compounds in the drug industry. The advent of advanced mass spectrometry tools, along with rapid whole genome sequencing and in silico identification of biosynthetic gene clusters that encode the machinery necessary for the synthesis of specialized metabolites, offers the opportunity to revisit microbial natural product libraries with renewed vigor. Assembling a suitable library of microbes and extracts for screening requires the investment of resources and the development of methods that have customarily been the proprietary purview of large pharmaceutical companies. Here, we report a perspective on our efforts to assemble a library of natural product-producing microbes and the establishment of methods to extract and fractionate bioactive compounds using resources available to most academic labs. We validate the library and approach through a series of screens for antimicrobial and cytotoxic agents. This work serves as a blueprint for establishing libraries of microbial natural product producers and bioactive extract fractions suitable for screens of bioactive compounds.</p><p><strong>One-sentence summary: </strong>Natural products are key to discovery of novel antimicrobial agents: Here, we describe our experience and lessons learned in constructing a microbial natural product and pre-fractionated extract library.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138487744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simone Zaghen, Oliver Konzock, Jing Fu, Eduard J Kerkhoven
{"title":"Abolishing storage lipids induces protein misfolding and stress responses in Yarrowia lipolytica.","authors":"Simone Zaghen, Oliver Konzock, Jing Fu, Eduard J Kerkhoven","doi":"10.1093/jimb/kuad031","DOIUrl":"10.1093/jimb/kuad031","url":null,"abstract":"<p><p>Yarrowia lipolytica naturally saves excess carbon as storage lipids. Engineering efforts allow redirecting the high precursor flux required for lipid synthesis toward added-value chemicals such as polyketides, flavonoids, and terpenoids. To redirect precursor flux from storage lipids to other products, four genes involved in triacylglycerol and sterol ester synthesis (DGA1, DGA2, LRO1, and ARE1) can be deleted. To elucidate the effect of the deletions on cell physiology and regulation, we performed chemostat cultivations under carbon and nitrogen limitations, followed by transcriptome analysis. We found that storage lipid-free cells show an enrichment of the unfolded protein response, and several biological processes related to protein refolding and degradation are enriched. Additionally, storage lipid-free cells show an altered lipid class distribution with an abundance of potentially cytotoxic free fatty acids under nitrogen limitation. Our findings not only highlight the importance of lipid metabolism on cell physiology and proteostasis, but can also aid the development of improved chassy strains of Y. lipolytica for commodity chemical production.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41138947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew McGlennen, Markus Dieser, Christine M Foreman, Stephan Warnat
{"title":"Monitoring biofilm growth and dispersal in real-time with impedance biosensors.","authors":"Matthew McGlennen, Markus Dieser, Christine M Foreman, Stephan Warnat","doi":"10.1093/jimb/kuad022","DOIUrl":"https://doi.org/10.1093/jimb/kuad022","url":null,"abstract":"<p><p>Microbial biofilm contamination is a widespread problem that requires precise and prompt detection techniques to effectively control its growth. Microfabricated electrochemical impedance spectroscopy (EIS) biosensors offer promise as a tool for early biofilm detection and monitoring of elimination. This study utilized a custom flow cell system with integrated sensors to make real-time impedance measurements of biofilm growth under flow conditions, which were correlated with confocal laser scanning microscopy (CLSM) imaging. Biofilm growth on EIS biosensors in basic aqueous growth media (tryptic soy broth, TSB) and an oil-water emulsion (metalworking fluid, MWF) attenuated in a sigmoidal decay pattern, which lead to an ∼22-25% decrease in impedance after 24 Hrs. Subsequent treatment of established biofilms increased the impedance by ∼14% and ∼41% in TSB and MWF, respectively. In the presence of furanone C-30, a quorum-sensing inhibitor (QSI), impedance remained unchanged from the initial time point for 18 Hrs in TSB and 72 Hrs in MWF. Biofilm changes enumerated from CLSM imaging corroborated impedance measurements, with treatment significantly reducing biofilm. Overall, these results support the application of microfabricated EIS biosensors for evaluating the growth and dispersal of biofilm in situ and demonstrate potential for use in industrial settings.</p><p><strong>One-sentence summary: </strong>This study demonstrates the use of microfabricated electrochemical impedance spectroscopy (EIS) biosensors for real-time monitoring and treatment evaluation of biofilm growth, offering valuable insights for biofilm control in industrial settings.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10251927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
César Aguilar, Karina Verdel-Aranda, Hilda E Ramos-Aboites, Cuauhtémoc Licona-Cassani, Francisco Barona-Gómez
{"title":"Streptomyces lividans 66 produces a protease inhibitor via a tRNA-utilizing enzyme interacting with a C-minus NRPS.","authors":"César Aguilar, Karina Verdel-Aranda, Hilda E Ramos-Aboites, Cuauhtémoc Licona-Cassani, Francisco Barona-Gómez","doi":"10.1093/jimb/kuad021","DOIUrl":"10.1093/jimb/kuad021","url":null,"abstract":"<p><p>Small peptide aldehydes (SPAs) with protease inhibitory activity are naturally occurring compounds shown to be synthesized by non-ribosomal peptide synthetases (NRPS). SPAs are widely used in biotechnology and have been utilized as therapeutic agents. They are also physiologically relevant and have been postulated to regulate the development of their producing microorganisms. Previously, we identified an NRPS-like biosynthetic gene cluster (BGC) in Streptomyces lividans 66 that lacked a condensation (C) domain but included a tRNA-utilizing enzyme (tRUE) belonging to the leucyl/phenylalanyl (L/F) transferase family. This system was predicted to direct the synthesis of a novel SPA, which we named livipeptin. Using evolutionary genome mining approaches, here, we confirm the presence of L/F transferase tRUEs within the genomes of diverse Streptomyces and related organisms, including fusions with the anticipated C-minus NRPS-like protein. We then demonstrate genetic functional cooperation between the identified L/F-transferase divergent tRUE homolog with the C-minus NRPS, leading to the synthesis of a metabolic fraction with protease inhibitory activity. Semisynthetic assays in the presence of RNAse revealed that the productive interaction between the tRUE and the C-minus NRPS enzymes is indeed tRNA dependent. We expect our findings to boost the discovery of SPAs, as well as the development of protease-mediated biotechnologies, by exploiting the uncovered genetic basis for synthesizing putative acetyl-leu/phe-arginine protease inhibitors. Furthermore, these results will facilitate the purification and structural elucidation of livipeptin, which has proven difficult to chemically characterize.</p><p><strong>Significance: </strong>The discovery of natural products biosynthetic genes marks a significant advancement in our understanding of these metabolites, for example of their evolution, activity, and biosynthesis, but also opens biotechnological opportunities and knowledge to advance genome mining approaches. We made this possible by uncovering a new biosynthetic pathway in Streptomyces lividans 66 shown to direct the synthesis of a strong protease inhibitor, termed livipeptin, following unprecedented biosynthetic rules and genes. Thus, by shedding light on the genetic mechanisms predicted to govern the production of acetyl-leu/phe-arginine protease inhibitors, including the elusive livipeptin, this study enables novel protease-mediated biotechnologies as well as approaches for discovering protease inhibitors from genome data.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10161195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cecelia Williamson, Kevin Kennedy, Sayak Bhattacharya, Samir Patel, Jennifer Perry, Jason Bolton, Lewis Brian Perkins, Leo Li-Ying Chan
{"title":"A novel image-based method for simultaneous counting of Lactobacillus and Saccharomyces in mixed culture fermentation.","authors":"Cecelia Williamson, Kevin Kennedy, Sayak Bhattacharya, Samir Patel, Jennifer Perry, Jason Bolton, Lewis Brian Perkins, Leo Li-Ying Chan","doi":"10.1093/jimb/kuad007","DOIUrl":"https://doi.org/10.1093/jimb/kuad007","url":null,"abstract":"<p><p>Mixed microorganism cultures are prevalent in the food industry. A variety of microbiological mixtures have been used in these unique fermenting processes to create distinctive flavor profiles and potential health benefits. Mixed cultures are typically not well characterized, which may be due to the lack of simple measurement tools. Image-based cytometry systems have been employed to automatically count bacteria or yeast cells. In this work, we aim to develop a novel image cytometry method to distinguish and enumerate mixed cultures of yeast and bacteria in beer products. Cellometer X2 from Nexcelom was used to count of Lactobacillus plantarum and Saccharomyces cerevisiae in mixed cultures using fluorescent dyes and size exclusion image analysis algorithm. Three experiments were performed for validation. (1) Yeast and bacteria monoculture titration, (2) mixed culture with various ratios, and (3) monitoring a Berliner Weisse mixed culture fermentation. All experiments were validated by comparing to manual counting of yeast and bacteria colony formation. They were highly comparable with ANOVA analysis showing p-value > 0.05. Overall, the novel image cytometry method was able to distinguish and count mixed cultures consistently and accurately, which may provide better characterization of mixed culture brewing applications and produce higher quality products.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9404105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced β-carotene production in Yarrowia lipolytica through the metabolic and fermentation engineering.","authors":"Yiwen Jing, Jingnan Wang, Haiyan Gao, Yujia Jiang, Wankui Jiang, Min Jiang, Fengxue Xin, Wenming Zhang","doi":"10.1093/jimb/kuad009","DOIUrl":"https://doi.org/10.1093/jimb/kuad009","url":null,"abstract":"<p><p>β-Carotene is a kind of high-value tetraterpene compound, which shows various applications in medical, agricultural, and industrial areas owing to its antioxidant, antitumor, and anti-inflammatory activities. In this study, Yarrowia lipolytica was successfully metabolically modified through the construction and optimization of β-carotene biosynthetic pathway for β-carotene production. The β-carotene titer in the engineered strain Yli-C with the introduction of the carotenogenesis genes crtI, crtE, and crtYB can reach 34.5 mg/L. With the overexpression of key gene in the mevalonate pathway and the enhanced expression of the fatty acid synthesis pathway, the β-carotene titer of the engineered strain Yli-CAH reached 87 mg/L, which was 152% higher than that of the strain Yli-C. Through the further expression of the rate-limiting enzyme tHMGR and the copy number of β-carotene synthesis related genes, the β-carotene production of Yli-C2AH2 strain reached 117.5 mg/L. The final strain Yli-C2AH2 produced 2.7 g/L β-carotene titer by fed-batch fermentation in a 5.0-L fermenter. This research will greatly speed up the process of developing microbial cell factories for the commercial production of β-carotene.</p><p><strong>One-sentence summary: </strong>In this study, the β-carotene synthesis pathway in engineered Yarrowia lipolytica was enhanced, and the fermentation conditions were optimized for high β-carotene production.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"50 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/11/6e/kuad009.PMC10124129.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9348363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daiane Dias Lopes, Bruce S Dien, Ronald E Hector, Vijay Singh, Stephanie R Thompson, Patricia J Slininger, Kyria Boundy-Mills, Sujit S Jagtap, Christopher V Rao
{"title":"Determining mating type and ploidy in Rhodotorula toruloides and its effect on growth on sugars from lignocellulosic biomass.","authors":"Daiane Dias Lopes, Bruce S Dien, Ronald E Hector, Vijay Singh, Stephanie R Thompson, Patricia J Slininger, Kyria Boundy-Mills, Sujit S Jagtap, Christopher V Rao","doi":"10.1093/jimb/kuad040","DOIUrl":"10.1093/jimb/kuad040","url":null,"abstract":"<p><p>Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH). Mating type was determined using a novel polymerase chain reaction (PCR)-based assay, which was validated using the classical microscopic test. Three of the strains were heterozygous for mating type (A1/A2). Ploidy analysis revealed a complex pattern. Two strains were triploid, eight haploid, and eight either diploid or aneuploid. Two of the A1/A2 strains were compared to their parents for growth on 75%v/v concentrated SGH. The A1/A2 strains were much more robust than the parental strains, which either did not grow or had extended lag times. The entire set was evaluated in 60%v/v SGH batch cultures for growth kinetics and biomass and lipid production. Lipid titers were 2.33-9.40 g/L with a median of 6.12 g/L, excluding the two strains that did not grow. Lipid yields were 0.032-0.131 (g/g) and lipid contents were 13.5-53.7% (g/g). Four strains had significantly higher lipid yields and contents. One of these strains, which had among the highest lipid yield in this study (0.131 ± 0.007 g/g), has not been previously described in the literature.</p><p><strong>Summary: </strong>The yeast Rhodotorula toruloides was used to produce oil using sugars extracted from a bioenergy grass.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138291089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}