Journal of Industrial Microbiology & Biotechnology最新文献

筛选
英文 中文
Characterization of the exopolysaccharides produced by the industrial yeast Komagataella phaffii. 工业酵母 Komagataella phaffii 产生的外多糖的特征。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-11-22 DOI: 10.1093/jimb/kuae046
Amanda Fischer, Vanessa Castagna, Shafraz Omer, Micah Marmorstein, Junqi Wu, Shannon Ceballos, Emma Skoog, Carlito B Lebrilla, Chris Suarez, Aletta Schnitzler
{"title":"Characterization of the exopolysaccharides produced by the industrial yeast Komagataella phaffii.","authors":"Amanda Fischer, Vanessa Castagna, Shafraz Omer, Micah Marmorstein, Junqi Wu, Shannon Ceballos, Emma Skoog, Carlito B Lebrilla, Chris Suarez, Aletta Schnitzler","doi":"10.1093/jimb/kuae046","DOIUrl":"https://doi.org/10.1093/jimb/kuae046","url":null,"abstract":"<p><p>The yeast Komagataella phaffii has become a popular host strain among biotechnology startup companies for producing recombinant proteins for food and adult nutrition applications. K. phaffii is a host of choice due to its long history of safe use, open access to protocols and strains, a secretome free of host proteins and proteases, and contract manufacturing organizations with deep knowledge in bioprocess scale-up. However, a recent publication highlighted the abundance of an unknown polysaccharide that accumulates in the supernatant during fermentation. This poses a significant challenge in using K. phaffii as a production host. This polysaccharide leads to difficulties in achieving high purity products and requires specialized and costly downstream processing steps for removal. In this study, we describe the use of the common K. phaffii host strain YB-4290 for production of the bioactive milk protein lactoferrin. Upon purification of lactoferrin using membrane-based separation methods, significant amounts of carbohydrate were co-purified with the protein. It was determined that the carbohydrate is mostly composed of mannose residues with minor amounts of glucose and glucosamine. The polysaccharide fraction has an average molecular weight of 50 kDa and consists mainly of mannan, galactomannan and amylose. In addition, a large fraction of the carbohydrate has an unknown structure likely composed of oligosaccharides. Additional strains were tested in fermentation to further understand the source of the carbohydrates. The commonly used industrial hosts, BG10 and YB-4290, produce a basal level of exopolysaccharide; YB-4290 producing slightly more than BG10. Overexpression of recombinant protein stimulates exopolysaccharide production well above levels produced by the host strains alone. Overall, this study aims to provide a foundation for developing methods to improve the economics of recombinant protein production using K. phaffii as a production host.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A synthetic co-culture for bioproduction of ammonia from methane and air. 从甲烷和空气中生物生产氨的合成共培养。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-11-18 DOI: 10.1093/jimb/kuae044
Anna Morgan Crumbley, Shivani Garg, Jonathan Ling Pan, Ramon Gonzalez
{"title":"A synthetic co-culture for bioproduction of ammonia from methane and air.","authors":"Anna Morgan Crumbley, Shivani Garg, Jonathan Ling Pan, Ramon Gonzalez","doi":"10.1093/jimb/kuae044","DOIUrl":"https://doi.org/10.1093/jimb/kuae044","url":null,"abstract":"<p><p>Fixed nitrogen fertilizers feed fifty percent of the global population, but most fixed nitrogen production occurs using energy-intensive Haber-Bosch-based chemistry combining nitrogen (N2) from air with gaseous hydrogen (H2) from methane (CH4) at high temperatures and pressures in large-scale facilities sensitive to supply chain disruptions. This work demonstrates the biological transformation of atmospheric nitrogen (N2) into ammonia (NH3) using methane (CH4) as the sole carbon and energy source in a single vessel at ambient pressure and temperature, representing a biological 'room-pressure and room-temperature' route to ammonia (NH3) that could ultimately be developed to support compact, remote, ammonia (NH3) production facilities amenable to distributed biomanufacturing. The synthetic microbial co-culture of engineered methanotroph Methylomicrobium buryatense (now Methylotuvimicrobium buryatense) and diazotroph Azotobacter vinelandii converted three methane (CH4) molecules to L-lactate (C3H6O3) and powered gaseous nitrogen (N2) conversion to ammonia (NH3). The design used division of labor and mutualistic metabolism strategies to address the oxygen sensitivity of nitrogenase and maximize methane oxidation efficiency. Media pH and salinity were central variables supporting co-cultivation. Carbon concentration heavily influenced ammonia production. Smaller scale ammonia (NH3) production near dispersed, abundant, and renewable methane (CH4) sources could reduce disruption risks and capitalize on untapped energy resources.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of plasmids from thermophilic Streptomyces strains and development of a gene cloning system for thermophilic Streptomyces species. 鉴定嗜热链霉菌株的质粒并开发嗜热链霉菌种的基因克隆系统。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-11-11 DOI: 10.1093/jimb/kuae042
Yuuki Yamada, Ikeda Haruo
{"title":"Identification of plasmids from thermophilic Streptomyces strains and development of a gene cloning system for thermophilic Streptomyces species.","authors":"Yuuki Yamada, Ikeda Haruo","doi":"10.1093/jimb/kuae042","DOIUrl":"https://doi.org/10.1093/jimb/kuae042","url":null,"abstract":"<p><p>To develop a host-vector system for use in thermophilic Streptomyces, multi-copy plasmids were screened for thermophilic Streptomyces species using data from public bioresource centers (JCM and NBRC). Of 27 thermophilic Streptomyces strains, three harbored plasmids. One plasmid (pSTVU1), derived from S. thermovulgaris NBRC 16615 (= JCM 4520, ATCC 19284, DSM 40444, ISP 5444, NRRL B-12375, NCIMB 10078), was multi-copy and relatively small in size. Analysis of the sequence of this multi-copy plasmid revealed that it was 7 838 bp and contained at least 10 predicted open reading frames (ORFs). The plasmid was introduced into 14 thermophilic Streptomyces strains (of 18 strains examined) and several mesophilic Streptomyces strains (S. lividans, S. parvulus, and S. avermitilis). pSTVU1 can be transferred by mixed culture because the plasmid encodes the ORF that regulates the transfer function. Plasmid transfer was observed not only between strains within the same species but also between mesophilic Streptomyces and thermophilic Streptomyces (and vice versa); however, the efficiency of this transfer was extremely low. We also confirmed that a derivative of pSTVU1 can be used as a multi-copy vector in the gene expression system that is expected to exhibit gene-dosage effects, establishing a method for efficient production of thermophilic α-amylase.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorizing Waste Streams to Enhance Sustainability and Economics in Microbial Oil Production. 重视废物流,提高微生物石油生产的可持续性和经济性。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-11-05 DOI: 10.1093/jimb/kuae041
Nicholas Renegar, Seth Rhoades, Anusha Nair, Anthony J Sinskey, John P Ward, David Ross Appleton
{"title":"Valorizing Waste Streams to Enhance Sustainability and Economics in Microbial Oil Production.","authors":"Nicholas Renegar, Seth Rhoades, Anusha Nair, Anthony J Sinskey, John P Ward, David Ross Appleton","doi":"10.1093/jimb/kuae041","DOIUrl":"https://doi.org/10.1093/jimb/kuae041","url":null,"abstract":"<p><p>Driven by demand for more sustainable products, research and capital investment has been committed to developing microbially produced oils. While researchers have shown oleaginous yeasts and other microbes can produce low-carbon footprint oils by leveraging waste streams as energy sources, previous analyses have not fully explored the quantity of available waste streams and in turn economy-of-scale enabled on capital and operating expenses. This paper makes parallels to 2G ethanol facilities, enabling a data-driven understanding of large-scale production economics. Production costs are broken down for a variety of scenarios. The analysis finds that reaching price parity with large-scale commodity oils (e.g., palm oil, high-oleic cooking oils, biofuels feedstock oils, lauric acid) is not possible today and unlikely even under aggressive future assumptions about strain productivity. Instead, commercial production must be targeted at end markets where sustainability-conscious consumers are willing to pay the price premiums identified in this paper.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy and nutrient recovery from municipal and industrial waste and wastewater - a perspective. 从城市和工业废物及废水中回收能源和养分--展望。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-10-24 DOI: 10.1093/jimb/kuae040
Lydia Rachbauer, Cesar B Granda, Shilva Shrestha, Werner Fuchs, Wolfgang Gabauer, Steven W Singer, Blake A Simmons, Meltem Urgun-Demirtas
{"title":"Energy and nutrient recovery from municipal and industrial waste and wastewater - a perspective.","authors":"Lydia Rachbauer, Cesar B Granda, Shilva Shrestha, Werner Fuchs, Wolfgang Gabauer, Steven W Singer, Blake A Simmons, Meltem Urgun-Demirtas","doi":"10.1093/jimb/kuae040","DOIUrl":"https://doi.org/10.1093/jimb/kuae040","url":null,"abstract":"<p><p>This publication highlights the latest advancements in the field of energy and nutrient recovery from organics rich municipal and industrial waste and wastewater. Energy and carbon rich waste streams are multifaceted, including municipal solid waste, industrial waste, agricultural by-products and residues, beached or residual seaweed biomass from post-harvest processing, and food waste and are valuable resources to overcome current limitations with sustainable feedstock supply chains for biorefining approaches. The emphasis will be on the most recent scientific progress in the area, including the development of new and innovative technologies, such as microbial processes and the role of biofilms for the degradation of organic pollutants in wastewater, as well as the production of biofuels and value-added products from organic waste and wastewater streams. The carboxylate platform, which employs microbiomes to produce mixed carboxylic acids through methane-arrested anaerobic digestion, is the focus as a new conversion technology. Nutrient recycling from conventional waste streams such as wastewater and digestate, and the energetic valorization of such streams will also be discussed. The selected technologies significantly contribute to advanced waste and wastewater treatment and support the recovery and utilization of carboxylic acids as the basis to produce many useful and valuable products, including food and feed preservatives, human and animal health supplements, solvents, plasticizers, lubricants, and even biofuels such as sustainable aviation fuel.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Modular Expression Across Phylogenetically Distinct Diazotrophs 在系统发育不同的重氮营养体中发展模块化表达
IF 3.4 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-09-11 DOI: 10.1093/jimb/kuae033
Shawn Kulakowski, Alex Rivier, Rita Kuo, Sonya Mengel, Thomas Eng
{"title":"Development of Modular Expression Across Phylogenetically Distinct Diazotrophs","authors":"Shawn Kulakowski, Alex Rivier, Rita Kuo, Sonya Mengel, Thomas Eng","doi":"10.1093/jimb/kuae033","DOIUrl":"https://doi.org/10.1093/jimb/kuae033","url":null,"abstract":"Diazotrophic bacteria can reduce atmospheric nitrogen into ammonia enabling bioavailability of the essential element. Many diazotrophs closely associate with plant roots increasing nitrogen availability, acting as plant growth promoters. These associations have the potential to reduce the need for costly synthetic fertilizers if they could be engineered for agricultural applications. However, despite the importance of diazotrophic bacteria, genetic tools are poorly developed in a limited number of species, in turn narrowing the crops and root microbiomes that can be targeted. Here we report optimized protocols and plasmids to manipulate phylogenetically diverse diazotrophs with the goal of enabling synthetic biology and genetic engineering. Three broad-host-range plasmids can be used across multiple diazotrophs, with the identification of one specific plasmid (containing origin of replication RK2 and a kanamycin resistance marker) showing the highest degree of compatibility across bacteria tested. We then demonstrated modular expression by testing seven promoters and eleven ribosomal binding sites using proxy fluorescent proteins. Finally, we tested four small molecule inducible systems to report expression in three diazotrophs and demonstrated genome editing in Klebsiella michiganensis M5al.","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"4 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous enumeration of yeast and bacterial cells in the context of industrial bioprocesses 在工业生物过程中同时枚举酵母和细菌细胞
IF 3.4 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-09-10 DOI: 10.1093/jimb/kuae029
Carolina Teixeira Martins, Ana Paula Jacobus, Renilson Conceição, Douglas Fernandes Barbin, Helena Bolini, Andreas Karoly Gombert
{"title":"Simultaneous enumeration of yeast and bacterial cells in the context of industrial bioprocesses","authors":"Carolina Teixeira Martins, Ana Paula Jacobus, Renilson Conceição, Douglas Fernandes Barbin, Helena Bolini, Andreas Karoly Gombert","doi":"10.1093/jimb/kuae029","DOIUrl":"https://doi.org/10.1093/jimb/kuae029","url":null,"abstract":"In scenarios where yeast and bacterial cells coexist, it is of interest to simultaneously quantify the concentrations of both cell types, since traditional methods used to determine these concentrations individually take more time and resources. Here, we compared different methods for quantifying the fuel ethanol Saccharomyces cerevisiae PE-2 yeast strain and cells from the probiotic Lactiplantibacillus plantarum strain in microbial suspensions. Individual suspensions were prepared, mixed in 1:1 or 100:1 yeast-to-bacteria ratios, covering the range typically encountered in sugarcane biorefineries, and analyzed using bright field microscopy, manual and automatic Spread-plate and Drop-plate counting, flow cytometry (at 1:1 and 100:1 ratios), and a Coulter Counter (at 1:1 and 100:1 ratios). We observed that for yeast cell counts in the mixture (1:1 and 100:1 ratios), flow cytometry, the Coulter Counter, and both Spread-plate options (manual and automatic CFU counting) yielded statistically similar results, while the Drop-plate and microscopy-based methods gave statistically different results. For bacterial cell quantification, the microscopy-based method, Drop-plate, and both Spread-plate plating options and flow cytometry (1:1 ratio) produced no significantly different results (p &amp;gt; .05). In contrast, the Coulter Counter (1:1 ratio) and flow cytometry (100:1 ratio) presented results statistically different (p &amp;lt; .05). Additionally, quantifying bacterial cells in a mixed suspension at a 100:1 ratio wasn't possible due to an overlap between yeast cell debris and bacterial cells. We conclude that each method has limitations, advantages, and disadvantages. One-Sentence Summary This study compares methods for simultaneously quantifying yeast and bacterial cells in a mixed sample, highlighting that in different cell proportions, some methods cannot quantify both cell types and present distinct advantages and limitations regarding time, cost, and precision.","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"57 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae 利用多模块代谢工程和外排工程提高重组酿酒酵母的番茄红素产量
IF 3.4 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-04-15 DOI: 10.1093/jimb/kuae015
Guangxi Huang, Jiarong Li, Jingyuan Lin, Changqing Duan, Guoliang Yan
{"title":"Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae","authors":"Guangxi Huang, Jiarong Li, Jingyuan Lin, Changqing Duan, Guoliang Yan","doi":"10.1093/jimb/kuae015","DOIUrl":"https://doi.org/10.1093/jimb/kuae015","url":null,"abstract":"Lycopene has been widely used in the food industry and medical field due to its antioxidant, anti-cancer, and anti-inflammatory properties. However, achieving efficient manufacture of lycopene using chassis cells on an industrial scale remains a major challenge. Herein, we attempted to integrate multiple metabolic engineering strategies to establish an efficient and balanced lycopene biosynthetic system in Saccharomyces cerevisiae. First, the lycopene synthesis pathway was modularized to sequentially enhance the metabolic flux of the Mevalonate pathway, the acetyl-CoA supply module, and lycopene exogenous enzymatic module. The modular operation enabled the efficient conversion of acetyl-CoA to downstream pathway of lycopene synthesis, resulting in a 3.1-fold increase of lycopene yield. Second, we introduced acetate as an exogenous carbon source and utilized an acetate-repressible promoter to replace the natural ERG9 promoter. This approach not only enhanced the supply of acetyl-CoA but also concurrently diminished the flux towards the competitive ergosterol pathway. As a result, a further 42.3% increase in lycopene production was observed. Third, we optimized NADPH supply and mitigated cytotoxicity by overexpressing ABC transporters to promote lycopene efflux. The obtained strain YLY-PDR11 showed a 12.7-fold increase in extracellular lycopene level compared to the control strain. Finally, the total lycopene yield reached 343.7mg/L, which was 4.3 times higher than that of the initial strain YLY-04. Our results demonstrate that combining multi-modular metabolic engineering with efflux engineering is an effective approach to improve the production of lycopene. This strategy can also be applied to the overproduction of other desirable isoprenoid compounds with similar synthesis and storage patterns in S. cerevisiae.","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"414 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of the surface engineered recombinant Escherichia coli to the industrial battery waste solution for lithium recovery 将表面工程重组大肠杆菌应用于工业电池废液中的锂回收
IF 3.4 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-04-04 DOI: 10.1093/jimb/kuae012
Jaehoon Jeong, Vidhya Selvamani, Murali kannan Maruthamuthu, Kulandaisamy Arulsamy, Soon Ho Hong
{"title":"Application of the surface engineered recombinant Escherichia coli to the industrial battery waste solution for lithium recovery","authors":"Jaehoon Jeong, Vidhya Selvamani, Murali kannan Maruthamuthu, Kulandaisamy Arulsamy, Soon Ho Hong","doi":"10.1093/jimb/kuae012","DOIUrl":"https://doi.org/10.1093/jimb/kuae012","url":null,"abstract":"Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing bacterial cell surface display strategy. Lithium binding peptide LBP1 was integrated to the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by recombinant strain was evaluated, and lithium particles on cellular surface was analysed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric and tetrameric repeats of the LBP1 peptide was constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"35 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing regulatory networks in Actinobacteria for natural product discovery 利用放线菌的调控网络发现天然产品
IF 3.4 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-04-04 DOI: 10.1093/jimb/kuae011
Hannah E Augustijn, Anna M Roseboom, Marnix H Medema, Gilles P van Wezel
{"title":"Harnessing regulatory networks in Actinobacteria for natural product discovery","authors":"Hannah E Augustijn, Anna M Roseboom, Marnix H Medema, Gilles P van Wezel","doi":"10.1093/jimb/kuae011","DOIUrl":"https://doi.org/10.1093/jimb/kuae011","url":null,"abstract":"Microbes typically live in complex habitats where they need to rapidly adapt to continuously changing growth conditions. To do so, they produce an astonishing array of natural products with diverse structures and functions. Actinobacteria stand out for their prolific production of bioactive molecules, including antibiotics, anticancer agents, antifungals, and immunosuppressants. Attention has been directed especially towards the identification of the compounds they produce and the mining of the large diversity of biosynthetic gene clusters (BGCs) in their genomes. However, the current return on investment in random screening for bioactive compounds is low, while it is hard to predict which of the millions of BGCs should be prioritized. Moreover, many of the BGCs for yet undiscovered natural products are silent or cryptic under laboratory growth conditions. To identify ways to prioritize and activate these BGCs, knowledge regarding the way their expression is controlled is crucial. Intricate regulatory networks control global gene expression in Actinobacteria, governed by a staggering number of up to 1000 transcription factors per strain. This review highlights recent advances in experimental and computational methods for characterizing and predicting transcription factor binding sites and their applications to guide natural product discovery. We propose that regulation-guided genome mining approaches will open new avenues toward eliciting the expression of BGCs, as well as prioritizing subsets of BGCs for expression using synthetic biology approaches. One-Sentence Summary This review provides insights into advances in experimental and computational methods aimed at predicting transcription factor binding sites and their applications to guide natural product discovery.","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"22 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信