{"title":"微生物生产氨基葡萄糖和n -乙酰氨基葡萄糖的研究进展","authors":"Anica Tasnim Protity, Shengde Zhou","doi":"10.1093/jimb/kuaf014","DOIUrl":null,"url":null,"abstract":"<p><p>Glucosamine (GlcN) and GlcN-based supplements, e.g. glucosamine hydrochloride, glucosamine sulfate, and N-acetyl glucosamine (GlcNAc), provide symptomatic relief to osteoarthritis patients and have been used as one of the most popular nutraceuticals. To meet the increasing demands, scientists have explored cost-effective methods for GlcN and GlcNAc production using low-cost raw materials such as seafood waste. However, the commercially available GlcN and GlcNAc production methods are environmentally harmful because of the use of toxic reagents. Moreover, the raw material used might be unsafe for consumers with shrimp allergies. On the other hand, bio-based GlcN production is gaining popularity because of its eco-friendly production approach and optimum reaction conditions. In this mini-review, we will discuss the recent developments to produce GlcN and GlcNAc through (1) the chemical and enzyme-mediated approaches of crude chitin hydrolysis, primarily obtained from shrimp and crabs; (2) the whole cell-based systems for fungal derived chitin bio-transformation and fungal fermentation; and (3) the metabolic engineering and the adaptive evolution based microbial biocatalyst for a balanced cell growth and optimal production of GlcN and GlcNAc. One-Sentence Summary: This article summarizes the mechanism of glucosamine and N-acetyl glucosamine production using bacteria, fungi, and chemical processes.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168751/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent advancement of glucosamine and N-acetyl glucosamine production using microorganisms: A review.\",\"authors\":\"Anica Tasnim Protity, Shengde Zhou\",\"doi\":\"10.1093/jimb/kuaf014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucosamine (GlcN) and GlcN-based supplements, e.g. glucosamine hydrochloride, glucosamine sulfate, and N-acetyl glucosamine (GlcNAc), provide symptomatic relief to osteoarthritis patients and have been used as one of the most popular nutraceuticals. To meet the increasing demands, scientists have explored cost-effective methods for GlcN and GlcNAc production using low-cost raw materials such as seafood waste. However, the commercially available GlcN and GlcNAc production methods are environmentally harmful because of the use of toxic reagents. Moreover, the raw material used might be unsafe for consumers with shrimp allergies. On the other hand, bio-based GlcN production is gaining popularity because of its eco-friendly production approach and optimum reaction conditions. In this mini-review, we will discuss the recent developments to produce GlcN and GlcNAc through (1) the chemical and enzyme-mediated approaches of crude chitin hydrolysis, primarily obtained from shrimp and crabs; (2) the whole cell-based systems for fungal derived chitin bio-transformation and fungal fermentation; and (3) the metabolic engineering and the adaptive evolution based microbial biocatalyst for a balanced cell growth and optimal production of GlcN and GlcNAc. One-Sentence Summary: This article summarizes the mechanism of glucosamine and N-acetyl glucosamine production using bacteria, fungi, and chemical processes.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuaf014\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuaf014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Recent advancement of glucosamine and N-acetyl glucosamine production using microorganisms: A review.
Glucosamine (GlcN) and GlcN-based supplements, e.g. glucosamine hydrochloride, glucosamine sulfate, and N-acetyl glucosamine (GlcNAc), provide symptomatic relief to osteoarthritis patients and have been used as one of the most popular nutraceuticals. To meet the increasing demands, scientists have explored cost-effective methods for GlcN and GlcNAc production using low-cost raw materials such as seafood waste. However, the commercially available GlcN and GlcNAc production methods are environmentally harmful because of the use of toxic reagents. Moreover, the raw material used might be unsafe for consumers with shrimp allergies. On the other hand, bio-based GlcN production is gaining popularity because of its eco-friendly production approach and optimum reaction conditions. In this mini-review, we will discuss the recent developments to produce GlcN and GlcNAc through (1) the chemical and enzyme-mediated approaches of crude chitin hydrolysis, primarily obtained from shrimp and crabs; (2) the whole cell-based systems for fungal derived chitin bio-transformation and fungal fermentation; and (3) the metabolic engineering and the adaptive evolution based microbial biocatalyst for a balanced cell growth and optimal production of GlcN and GlcNAc. One-Sentence Summary: This article summarizes the mechanism of glucosamine and N-acetyl glucosamine production using bacteria, fungi, and chemical processes.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology