Finding of the positive impact of glucose on the production of indican over indigo in engineered Escherichia coli.

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hyun Jin Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, Suwon Kim, Jungoh Ahn, Kwon-Young Choi, Jeong Chan Joo, Shashi Kant Bhatia, Yung-Hun Yang
{"title":"Finding of the positive impact of glucose on the production of indican over indigo in engineered Escherichia coli.","authors":"Hyun Jin Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, Suwon Kim, Jungoh Ahn, Kwon-Young Choi, Jeong Chan Joo, Shashi Kant Bhatia, Yung-Hun Yang","doi":"10.1093/jimb/kuae048","DOIUrl":null,"url":null,"abstract":"<p><p>Indigo is a plant-based natural blue dye that can be produced via chemical synthesis and biological pathways. However, the toxic reduction processes and intracellular production of indigo through microbial metabolism are often limited by insolubility of indigo and complex downstream processing, causing environmental issues in the dyeing processes. Additionally, indican, a precursor of indigo with a glucose moiety, is highly soluble and can be easily converted into indoxyl by β-glucosidase, forming indigo under mild conditions. We constructed an indican-producing strain Escherichia coli BL21 HI201 by introducing a UDP-glycosyltransferase (ugt) into an indoxyl production system containing tryptophanse (tnaA) and flavin-containing monooxygenase (FMO) genes, enabling conversion of tryptophan into indican. Testing of the effect by various carbon sources suggested that glucose is one of the major factors affecting the ratio of indigo to indican, and increase in glucose concentration to more than 1.5% could produce sole indican without indigo. Under optimal conditions, E. coli BL21 HI201 biosynthesized 5.65 mM indican from tryptophan. Additionally, after deletion of various β-glucosidase genes, the bglA knockout strain E. coli BL21 HI204 produced more indican, achieving 6.79 mM after 24 hr of cultivation. This study demonstrated the strategic production of indican through the installation of a production system, deletion of a byproduct pathway, and control of glucose concentration.</p><p><strong>One-sentence summary: </strong>This paper demonstrates the strategic enhancement of indican production in genetically engineered Escherichia coli BL21 by optimizing metabolic pathways and controlling glucose concentrations.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"52 ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae048","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Indigo is a plant-based natural blue dye that can be produced via chemical synthesis and biological pathways. However, the toxic reduction processes and intracellular production of indigo through microbial metabolism are often limited by insolubility of indigo and complex downstream processing, causing environmental issues in the dyeing processes. Additionally, indican, a precursor of indigo with a glucose moiety, is highly soluble and can be easily converted into indoxyl by β-glucosidase, forming indigo under mild conditions. We constructed an indican-producing strain Escherichia coli BL21 HI201 by introducing a UDP-glycosyltransferase (ugt) into an indoxyl production system containing tryptophanse (tnaA) and flavin-containing monooxygenase (FMO) genes, enabling conversion of tryptophan into indican. Testing of the effect by various carbon sources suggested that glucose is one of the major factors affecting the ratio of indigo to indican, and increase in glucose concentration to more than 1.5% could produce sole indican without indigo. Under optimal conditions, E. coli BL21 HI201 biosynthesized 5.65 mM indican from tryptophan. Additionally, after deletion of various β-glucosidase genes, the bglA knockout strain E. coli BL21 HI204 produced more indican, achieving 6.79 mM after 24 hr of cultivation. This study demonstrated the strategic production of indican through the installation of a production system, deletion of a byproduct pathway, and control of glucose concentration.

One-sentence summary: This paper demonstrates the strategic enhancement of indican production in genetically engineered Escherichia coli BL21 by optimizing metabolic pathways and controlling glucose concentrations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信