{"title":"优化肽基脯氨酰顺式/反式转化酶环嗜血素B的表达,使其具有来自球孢子虫的原核毒性。","authors":"Ling Hu, Baicheng Deng, Rong Wu, Miaorong Zhan, Xuchu Hu, Huaiqiu Huang","doi":"10.1093/jimb/kuae017","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB.</p><p><strong>One-sentence summary: </strong>The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimized expression of Peptidyl-prolyl cis/transisomerase cyclophilinB with prokaryotic toxicity from Sporothrix globosa.\",\"authors\":\"Ling Hu, Baicheng Deng, Rong Wu, Miaorong Zhan, Xuchu Hu, Huaiqiu Huang\",\"doi\":\"10.1093/jimb/kuae017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB.</p><p><strong>One-sentence summary: </strong>The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuae017\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
环嗜蛋白B(CypB)是免疫嗜蛋白家族的重要成员,具有肽基-脯氨酰顺反异构酶(PPIase)活性,对原核生物和真核生物的生长和新陈代谢至关重要。球孢子虫(S.globosa)是球孢子虫复合体中的一种主要病原体,会引起孢子斑枯病。转录组分析发现,cypB 基因在球孢子虫中高度表达。我们之前的研究表明,含有 SgcypB 基因的重组大肠杆菌菌株在诱导表达该蛋白时未能产生足够的产物,这意味着重组蛋白对细菌宿主具有潜在毒性。生物信息学分析表明,SgCypB 的 N 端 52 个氨基酸残基和 C 端附近的 21 个氨基酸残基中含有跨膜肽,细胞质中含有 18 个氨基酸残基。AlphaFold2 预测了 SgCypB 的三维结构,其中有一个由球形胞外部分组成的独立 PPIase 结构域。因此,我们选择表达胞外结构域,以获得具有 PPIase 活性的高水平重组蛋白。最后,我们成功地从球囊虫中制备出了高产、截短的重组环嗜蛋白 B 蛋白(SgtrCypB),它保留了特有的 PPIase 活性,且不会对宿主菌产生毒性。这项研究为对原核生物有毒的蛋白质(如 SgCypB)提供了一种替代表达策略。
Optimized expression of Peptidyl-prolyl cis/transisomerase cyclophilinB with prokaryotic toxicity from Sporothrix globosa.
Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB.
One-sentence summary: The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology