Journal of Industrial Microbiology & Biotechnology最新文献

筛选
英文 中文
Use of qPCR to monitor 2,4-dinitroanisole degrading bacteria in water and soil slurry cultures. 使用 qPCR 监测水和土壤泥浆培养物中的 2,4-二硝基苯甲醚降解细菌。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae047
Lisa A Waidner, Carrie E Daniel, Sarah E Kovar, Jim C Spain
{"title":"Use of qPCR to monitor 2,4-dinitroanisole degrading bacteria in water and soil slurry cultures.","authors":"Lisa A Waidner, Carrie E Daniel, Sarah E Kovar, Jim C Spain","doi":"10.1093/jimb/kuae047","DOIUrl":"10.1093/jimb/kuae047","url":null,"abstract":"<p><p>Prediction and process monitoring during natural attenuation, bioremediation, and biotreatment require effective strategies for detection and enumeration of the responsible bacteria. The use of 2,4-dinitroanisole (DNAN) as a component of insensitive munitions leads to environmental contamination of firing ranges and manufacturing waste streams. Nocardioides sp. strain JS1661 degrades DNAN under aerobic conditions via a pathway involving an unusual DNAN demethylase. We used the deeply branched sequences of DNAN degradation functional genes as a target for development of a molecular method for detection of the bacteria. A qPCR assay was designed for the junction between dnhA and dnhB, the adjacent genes encoding DNAN demethylase. The assay allowed reproducible enumeration of JS1661 during growth in liquid media and soil slurries. Results were consistent with biodegradation of DNAN, accumulation of products, and classical biomass estimates, including most probable number and OD600. The results provide a sensitive and specific molecular method for prediction of degradation potential and process evaluation during degradation of DNAN.</p><p><strong>One-sentence summary: </strong>A unique target sequence in functional genes enables the design of a simple and specific qPCR assay for enumeration of aerobic 2,4-dinitroanisole-degrading bacteria in soil and water.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of automated metabolite control using mid-infrared probe for bioprocesses and vaccine manufacturing. 利用中红外探头开发用于生物工艺和疫苗生产的自动代谢物控制。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae019
Jennifer Reid, Manjit Haer, Airong Chen, Calvin Adams, Yu Chen Lin, Jim Cronin, Zhou Yu, Marina Kirkitadze, Tao Yuan
{"title":"Development of automated metabolite control using mid-infrared probe for bioprocesses and vaccine manufacturing.","authors":"Jennifer Reid, Manjit Haer, Airong Chen, Calvin Adams, Yu Chen Lin, Jim Cronin, Zhou Yu, Marina Kirkitadze, Tao Yuan","doi":"10.1093/jimb/kuae019","DOIUrl":"10.1093/jimb/kuae019","url":null,"abstract":"<p><p>Automation of metabolite control in fermenters is fundamental to develop vaccine manufacturing processes more quickly and robustly. We created an end-to-end process analytical technology and quality by design-focused process by replacing manual control of metabolites during the development of fed-batch bioprocesses with a system that is highly adaptable and automation-enabled. Mid-infrared spectroscopy with an attenuated total reflectance probe in-line, and simple linear regression using the Beer-Lambert Law, were developed to quantitate key metabolites (glucose and glutamate) from spectral data that measured complex media during fermentation. This data was digitally connected to a process information management system, to enable continuous control of feed pumps with proportional-integral-derivative controllers that maintained nutrient levels throughout fed-batch stirred-tank fermenter processes. Continuous metabolite data from mid-infrared spectra of cultures in stirred-tank reactors enabled feedback loops and control of the feed pumps in pharmaceutical development laboratories. This improved process control of nutrient levels by 20-fold and the drug substance yield by an order of magnitude. Furthermore, the method is adaptable to other systems and enables soft sensing, such as the consumption rate of metabolites. The ability to develop quantitative metabolite templates quickly and simply for changing bioprocesses was instrumental for project acceleration and heightened process control and automation.</p><p><strong>One-sentence summary: </strong>Intelligent digital control systems using continuous in-line metabolite data enabled end-to-end automation of fed-batch processes in stirred-tank reactors.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of functional genomics for domestication of novel non-model microbes. 应用功能基因组学驯化新型非模式微生物。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae022
Margaret K Bales, Michael Melesse Vergara, Carrie A Eckert
{"title":"Application of functional genomics for domestication of novel non-model microbes.","authors":"Margaret K Bales, Michael Melesse Vergara, Carrie A Eckert","doi":"10.1093/jimb/kuae022","DOIUrl":"10.1093/jimb/kuae022","url":null,"abstract":"<p><p>With the expansion of domesticated microbes producing biomaterials and chemicals to support a growing circular bioeconomy, the variety of waste and sustainable substrates that can support microbial growth and production will also continue to expand. The diversity of these microbes also requires a range of compatible genetic tools to engineer improved robustness and economic viability. As we still do not fully understand the function of many genes in even highly studied model microbes, engineering improved microbial performance requires introducing genome-scale genetic modifications followed by screening or selecting mutants that enhance growth under prohibitive conditions encountered during production. These approaches include adaptive laboratory evolution, random or directed mutagenesis, transposon-mediated gene disruption, or CRISPR interference (CRISPRi). Although any of these approaches may be applicable for identifying engineering targets, here we focus on using CRISPRi to reduce the time required to engineer more robust microbes for industrial applications.</p><p><strong>One-sentence summary: </strong>The development of genome scale CRISPR-based libraries in new microbes enables discovery of genetic factors linked to desired traits for engineering more robust microbial systems.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A synthetic co-culture for bioproduction of ammonia from methane and air. 从甲烷和空气中生物生产氨的合成共培养。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae044
Anna Morgan Crumbley, Shivani Garg, Jonathan Lin Pan, Ramon Gonzalez
{"title":"A synthetic co-culture for bioproduction of ammonia from methane and air.","authors":"Anna Morgan Crumbley, Shivani Garg, Jonathan Lin Pan, Ramon Gonzalez","doi":"10.1093/jimb/kuae044","DOIUrl":"10.1093/jimb/kuae044","url":null,"abstract":"<p><p>Fixed nitrogen fertilizers feed 50% of the global population, but most fixed nitrogen production occurs using energy-intensive Haber-Bosch-based chemistry combining nitrogen (N2) from air with gaseous hydrogen (H2) from methane (CH4) at high temperatures and pressures in large-scale facilities sensitive to supply chain disruptions. This work demonstrates the biological transformation of atmospheric N2 into ammonia (NH3) using CH4 as the sole carbon and energy source in a single vessel at ambient pressure and temperature, representing a biological \"room-pressure and room-temperature\" route to NH3 that could ultimately be developed to support compact, remote, NH3 production facilities amenable to distributed biomanufacturing. The synthetic microbial co-culture of engineered methanotroph Methylomicrobium buryatense (now Methylotuvimicrobium buryatense) and diazotroph Azotobacter vinelandii converted three CH4 molecules to l-lactate (C3H6O3) and powered gaseous N2 conversion to NH3. The design used division of labor and mutualistic metabolism strategies to address the oxygen sensitivity of nitrogenase and maximize CH4 oxidation efficiency. Media pH and salinity were central variables supporting co-cultivation. Carbon concentration heavily influenced NH3 production. Smaller-scale NH3 production near dispersed, abundant, and renewable CH4 sources could reduce disruption risks and capitalize on untapped energy resources.</p><p><strong>One-sentence summary: </strong>Co-culture of engineered microorganisms Methylomicrobium buryatense and Azotobacter vinelandii facilitated the use of methane gas as a sole carbon feedstock to produce ammonia in an ambient temperature, atmospheric pressure, single-vessel system.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the alcohol respiratory chain and energy metabolism by enhancing PQQ synthesis in Acetobacter pasteurianus. 通过提高巴氏醋酸杆菌中 PQQ 的合成,改善酒精呼吸链和能量代谢。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae036
Wenqing Zhang, Chen Feng, Chunxue Zhang, Jia Song, Li Li, Menglei Xia, Wei Ding, Yu Zheng, Min Wang
{"title":"Improving the alcohol respiratory chain and energy metabolism by enhancing PQQ synthesis in Acetobacter pasteurianus.","authors":"Wenqing Zhang, Chen Feng, Chunxue Zhang, Jia Song, Li Li, Menglei Xia, Wei Ding, Yu Zheng, Min Wang","doi":"10.1093/jimb/kuae036","DOIUrl":"10.1093/jimb/kuae036","url":null,"abstract":"<p><p>Pyrroloquinoline quinone (PQQ) is one of the important coenzymes in living organisms. In acetic acid bacteria (AAB), it plays a crucial role in the alcohol respiratory chain, as a coenzyme of alcohol dehydrogenase (ADH). In this work, the PQQ biosynthetic genes were overexpressed in Acetobacter pasteurianus CGMCC 3089 to improve the fermentation performance. The result shows that the intracellular and extracellular PQQ contents in the recombinant strain A. pasteurianus (pBBR1-p264-pqq) were 152.53% and 141.08% higher than those of the control A. pasteurianus (pBBR1-p264), respectively. The catalytic activity of ADH and aldehyde dehydrogenase increased by 52.92% and 67.04%, respectively. The results indicated that the energy charge and intracellular ATP were also improved in the recombinant strain. The acetic acid fermentation was carried out using a 5 L self-aspirating fermenter, and the acetic acid production rate of the recombinant strain was 23.20% higher compared with the control. Furthermore, the relationship between the PQQ and acetic acid tolerance of cells was analyzed. The biomass of recombinant strain was 180.2%, 44.3%, and 38.6% higher than those of control under 2%, 3%, and 4% acetic acid stress, respectively. After being treated with 6% acetic acid for 40 min, the survival rate of the recombinant strain was increased by 76.20% compared with the control. Those results demonstrated that overexpression of PQQ biosynthetic genes increased the content of PQQ, therefore improving the acetic acid fermentation and the cell tolerance against acetic acid by improving the alcohol respiratory chain and energy metabolism.</p><p><strong>One sentence summary: </strong>The increase in PQQ content enhances the activity of the alcohol respiratory chain of Acetobacter pasteurianus, and the increase in energy charge enhances the tolerance of cells against acetic acid, therefore, improving the efficiency of acetic acid fermentation.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized expression of Peptidyl-prolyl cis/transisomerase cyclophilinB with prokaryotic toxicity from Sporothrix globosa. 优化肽基脯氨酰顺式/反式转化酶环嗜血素B的表达,使其具有来自球孢子虫的原核毒性。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae017
Ling Hu, Baicheng Deng, Rong Wu, Miaorong Zhan, Xuchu Hu, Huaiqiu Huang
{"title":"Optimized expression of Peptidyl-prolyl cis/transisomerase cyclophilinB with prokaryotic toxicity from Sporothrix globosa.","authors":"Ling Hu, Baicheng Deng, Rong Wu, Miaorong Zhan, Xuchu Hu, Huaiqiu Huang","doi":"10.1093/jimb/kuae017","DOIUrl":"10.1093/jimb/kuae017","url":null,"abstract":"<p><p>Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB.</p><p><strong>One-sentence summary: </strong>The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the feasibility of medium-chain oleochemical synthesis using microbial chain elongation. 评估利用微生物链延伸进行中链油化学合成的可行性。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae027
Ethan Agena, Ian M Gois, Connor M Bowers, Radhakrishnan Mahadevan, Matthew J Scarborough, Christopher E Lawson
{"title":"Evaluating the feasibility of medium-chain oleochemical synthesis using microbial chain elongation.","authors":"Ethan Agena, Ian M Gois, Connor M Bowers, Radhakrishnan Mahadevan, Matthew J Scarborough, Christopher E Lawson","doi":"10.1093/jimb/kuae027","DOIUrl":"10.1093/jimb/kuae027","url":null,"abstract":"<p><p>Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids, which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product chain length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range.</p><p><strong>One-sentence summary: </strong>In this work, the authors use constraint-based metabolic modelling and enzyme cost minimization to assess the feasibility of using metabolic engineering to expand the product spectrum of anaerobic chain elongating bacteria.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secretory expression of amylosucrase in Bacillus licheniformis through twin-arginine translocation pathway. 地衣芽孢杆菌通过孪精氨酸转运途径分泌表达淀粉糖化酶
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae004
Caizhe Wang, Dandan Niu, Nokuthula Peace Mchunu, Meng Zhang, Suren Singh, Zhengxiang Wang
{"title":"Secretory expression of amylosucrase in Bacillus licheniformis through twin-arginine translocation pathway.","authors":"Caizhe Wang, Dandan Niu, Nokuthula Peace Mchunu, Meng Zhang, Suren Singh, Zhengxiang Wang","doi":"10.1093/jimb/kuae004","DOIUrl":"10.1093/jimb/kuae004","url":null,"abstract":"<p><p>Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production.</p><p><strong>One-sentence summary: </strong>Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy and nutrient recovery from municipal and industrial waste and wastewater-a perspective. 从城市和工业废物及废水中回收能源和养分--展望。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae040
Lydia Rachbauer, Cesar B Granda, Shilva Shrestha, Werner Fuchs, Wolfgang Gabauer, Steven W Singer, Blake A Simmons, Meltem Urgun-Demirtas
{"title":"Energy and nutrient recovery from municipal and industrial waste and wastewater-a perspective.","authors":"Lydia Rachbauer, Cesar B Granda, Shilva Shrestha, Werner Fuchs, Wolfgang Gabauer, Steven W Singer, Blake A Simmons, Meltem Urgun-Demirtas","doi":"10.1093/jimb/kuae040","DOIUrl":"10.1093/jimb/kuae040","url":null,"abstract":"<p><p>This publication highlights the latest advancements in the field of energy and nutrient recovery from organics rich municipal and industrial waste and wastewater. Energy and carbon rich waste streams are multifaceted, including municipal solid waste, industrial waste, agricultural by-products and residues, beached or residual seaweed biomass from post-harvest processing, and food waste, and are valuable resources to overcome current limitations with sustainable feedstock supply chains for biorefining approaches. The emphasis will be on the most recent scientific progress in the area, including the development of new and innovative technologies, such as microbial processes and the role of biofilms for the degradation of organic pollutants in wastewater, as well as the production of biofuels and value-added products from organic waste and wastewater streams. The carboxylate platform, which employs microbiomes to produce mixed carboxylic acids through methane-arrested anaerobic digestion, is the focus as a new conversion technology. Nutrient recycling from conventional waste streams such as wastewater and digestate, and the energetic valorization of such streams will also be discussed. The selected technologies significantly contribute to advanced waste and wastewater treatment and support the recovery and utilization of carboxylic acids as the basis to produce many useful and valuable products, including food and feed preservatives, human and animal health supplements, solvents, plasticizers, lubricants, and even biofuels such as sustainable aviation fuel.</p><p><strong>One-sentence summary: </strong>Multifaceted waste streams as the basis for resource recovery are essential to achieve environmental sustainability in a circular economy, and require the development of next-generation waste treatment technologies leveraging a highly adaptive mixed microbial community approach to produce new biochemicals, biomaterials, and biofuels from carbon-rich organic waste streams.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring xylose metabolism in non-conventional yeasts: kinetic characterization and product accumulation under different aeration conditions. 探索非常规酵母的木糖代谢:不同通气条件下的动力学特征和产物积累。
IF 3.2 4区 生物学
Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-01-09 DOI: 10.1093/jimb/kuae023
Bruna C Bolzico, Sofia Racca, Jorge N Khawam, Rodrigo J Leonardi, Ariel H Tomassi, Maria T Benzzo, Raul N Comelli
{"title":"Exploring xylose metabolism in non-conventional yeasts: kinetic characterization and product accumulation under different aeration conditions.","authors":"Bruna C Bolzico, Sofia Racca, Jorge N Khawam, Rodrigo J Leonardi, Ariel H Tomassi, Maria T Benzzo, Raul N Comelli","doi":"10.1093/jimb/kuae023","DOIUrl":"10.1093/jimb/kuae023","url":null,"abstract":"<p><p>d-Xylose is a metabolizable carbon source for several non-Saccharomyces species, but not for native strains of S. cerevisiae. For the potential application of xylose-assimilating yeasts in biotechnological processes, a deeper understanding of pentose catabolism is needed. This work aimed to investigate the traits behind xylose utilization in diverse yeast species. The performance of 9 selected xylose-metabolizing yeast strains was evaluated and compared across 3 oxygenation conditions. Oxygenation diversely impacted growth, xylose consumption, and product accumulation. Xylose utilization by ethanol-producing species such as Spathaspora passalidarum and Scheffersomyces stipitis was less affected by oxygen restriction compared with other xylitol-accumulating species such as Meyerozyma guilliermondii, Naganishia liquefaciens, and Yamadazyma sp., for which increased aeration stimulated xylose assimilation considerably. Spathaspora passalidarum exhibited superior conversion of xylose to ethanol and showed the fastest growth and xylose consumption in all 3 conditions. By performing assays under identical conditions for all selected yeasts, we minimize bias in comparisons, providing valuable insight into xylose metabolism and facilitating the development of robust bioprocesses.</p><p><strong>One-sentence summary: </strong>This work aims to expand the knowledge of xylose utilization in different yeast species, with a focus on how oxygenation impacts xylose assimilation.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信