Secretory expression of amylosucrase in Bacillus licheniformis through twin-arginine translocation pathway.

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Caizhe Wang, Dandan Niu, Nokuthula Peace Mchunu, Meng Zhang, Suren Singh, Zhengxiang Wang
{"title":"Secretory expression of amylosucrase in Bacillus licheniformis through twin-arginine translocation pathway.","authors":"Caizhe Wang, Dandan Niu, Nokuthula Peace Mchunu, Meng Zhang, Suren Singh, Zhengxiang Wang","doi":"10.1093/jimb/kuae004","DOIUrl":null,"url":null,"abstract":"<p><p>Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production.</p><p><strong>One-sentence summary: </strong>Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production.

One-sentence summary: Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.

地衣芽孢杆菌通过孪精氨酸转运途径分泌表达淀粉糖化酶
淀粉糖化酶(EC 2.4.1.4)是一种多功能酶,在生物技术和食品生产中具有巨大潜力。为促进其高效制备,我们在地衣芽孢杆菌(Bacillus licheniformis)中实施了一种新的表达策略,以分泌性表达多糖奈瑟氏菌淀粉糖酶(NpAS)。宿主菌株地衣芽孢杆菌(B. licheniformis CBBD302)经过基因改造,删除了负责编码从蔗糖中合成胞外左旋糖苷酶(levansucrase)的 sacB 基因,形成了左旋糖苷酶缺乏的菌株地衣芽孢杆菌(B. licheniformis CBBD302B)。地衣芽孢杆菌 CBBD302B 利用高效的 Sec 型信号肽 SamyL 成功表达了 NpAS,但其细胞外转运却不成功。因此,研究人员使用信号肽 SglmU 研究了 NpAS 通过孪精氨酸转位(TAT)途径的表达。研究发现,在信号肽SglmU的促进下,NpAS可以有效地通过TAT途径转运到细胞外。值得注意的是,在培养基中检测到了总表达活性的 62.81%。这项研究标志着 NpAS 首次在芽孢杆菌宿主细胞中成功分泌表达,为今后的高效生产奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信