Anna Morgan Crumbley, Shivani Garg, Jonathan Ling Pan, Ramon Gonzalez
{"title":"从甲烷和空气中生物生产氨的合成共培养。","authors":"Anna Morgan Crumbley, Shivani Garg, Jonathan Ling Pan, Ramon Gonzalez","doi":"10.1093/jimb/kuae044","DOIUrl":null,"url":null,"abstract":"<p><p>Fixed nitrogen fertilizers feed fifty percent of the global population, but most fixed nitrogen production occurs using energy-intensive Haber-Bosch-based chemistry combining nitrogen (N2) from air with gaseous hydrogen (H2) from methane (CH4) at high temperatures and pressures in large-scale facilities sensitive to supply chain disruptions. This work demonstrates the biological transformation of atmospheric nitrogen (N2) into ammonia (NH3) using methane (CH4) as the sole carbon and energy source in a single vessel at ambient pressure and temperature, representing a biological 'room-pressure and room-temperature' route to ammonia (NH3) that could ultimately be developed to support compact, remote, ammonia (NH3) production facilities amenable to distributed biomanufacturing. The synthetic microbial co-culture of engineered methanotroph Methylomicrobium buryatense (now Methylotuvimicrobium buryatense) and diazotroph Azotobacter vinelandii converted three methane (CH4) molecules to L-lactate (C3H6O3) and powered gaseous nitrogen (N2) conversion to ammonia (NH3). The design used division of labor and mutualistic metabolism strategies to address the oxygen sensitivity of nitrogenase and maximize methane oxidation efficiency. Media pH and salinity were central variables supporting co-cultivation. Carbon concentration heavily influenced ammonia production. Smaller scale ammonia (NH3) production near dispersed, abundant, and renewable methane (CH4) sources could reduce disruption risks and capitalize on untapped energy resources.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synthetic co-culture for bioproduction of ammonia from methane and air.\",\"authors\":\"Anna Morgan Crumbley, Shivani Garg, Jonathan Ling Pan, Ramon Gonzalez\",\"doi\":\"10.1093/jimb/kuae044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fixed nitrogen fertilizers feed fifty percent of the global population, but most fixed nitrogen production occurs using energy-intensive Haber-Bosch-based chemistry combining nitrogen (N2) from air with gaseous hydrogen (H2) from methane (CH4) at high temperatures and pressures in large-scale facilities sensitive to supply chain disruptions. This work demonstrates the biological transformation of atmospheric nitrogen (N2) into ammonia (NH3) using methane (CH4) as the sole carbon and energy source in a single vessel at ambient pressure and temperature, representing a biological 'room-pressure and room-temperature' route to ammonia (NH3) that could ultimately be developed to support compact, remote, ammonia (NH3) production facilities amenable to distributed biomanufacturing. The synthetic microbial co-culture of engineered methanotroph Methylomicrobium buryatense (now Methylotuvimicrobium buryatense) and diazotroph Azotobacter vinelandii converted three methane (CH4) molecules to L-lactate (C3H6O3) and powered gaseous nitrogen (N2) conversion to ammonia (NH3). The design used division of labor and mutualistic metabolism strategies to address the oxygen sensitivity of nitrogenase and maximize methane oxidation efficiency. Media pH and salinity were central variables supporting co-cultivation. Carbon concentration heavily influenced ammonia production. Smaller scale ammonia (NH3) production near dispersed, abundant, and renewable methane (CH4) sources could reduce disruption risks and capitalize on untapped energy resources.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuae044\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae044","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A synthetic co-culture for bioproduction of ammonia from methane and air.
Fixed nitrogen fertilizers feed fifty percent of the global population, but most fixed nitrogen production occurs using energy-intensive Haber-Bosch-based chemistry combining nitrogen (N2) from air with gaseous hydrogen (H2) from methane (CH4) at high temperatures and pressures in large-scale facilities sensitive to supply chain disruptions. This work demonstrates the biological transformation of atmospheric nitrogen (N2) into ammonia (NH3) using methane (CH4) as the sole carbon and energy source in a single vessel at ambient pressure and temperature, representing a biological 'room-pressure and room-temperature' route to ammonia (NH3) that could ultimately be developed to support compact, remote, ammonia (NH3) production facilities amenable to distributed biomanufacturing. The synthetic microbial co-culture of engineered methanotroph Methylomicrobium buryatense (now Methylotuvimicrobium buryatense) and diazotroph Azotobacter vinelandii converted three methane (CH4) molecules to L-lactate (C3H6O3) and powered gaseous nitrogen (N2) conversion to ammonia (NH3). The design used division of labor and mutualistic metabolism strategies to address the oxygen sensitivity of nitrogenase and maximize methane oxidation efficiency. Media pH and salinity were central variables supporting co-cultivation. Carbon concentration heavily influenced ammonia production. Smaller scale ammonia (NH3) production near dispersed, abundant, and renewable methane (CH4) sources could reduce disruption risks and capitalize on untapped energy resources.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology