Jessica A Vervalle, Melané A Vivier, Jos D Cox, Boje Müller, Christian Schulze Gronover, Ken R Tobutt, Phyllis Burger, Rouvay Roodt-Wilding, Justin G Lashbrooke
{"title":"Metabolic and genetic analysis links TRITERPENE SYNTHASE 12 (VvTTPS12) to oleanolic acid biosynthesis in grape berry wax.","authors":"Jessica A Vervalle, Melané A Vivier, Jos D Cox, Boje Müller, Christian Schulze Gronover, Ken R Tobutt, Phyllis Burger, Rouvay Roodt-Wilding, Justin G Lashbrooke","doi":"10.1093/jxb/eraf119","DOIUrl":"https://doi.org/10.1093/jxb/eraf119","url":null,"abstract":"<p><p>Fruit surface cuticular waxes of grape berries are important in stress response and fruit quality. Despite extensive studies on the biosynthesis, regulation and composition of fruit surface waxes, knowledge of the compositional variation and genetic mechanisms underlying grape berry cuticular wax formation remains limited. This study aimed to characterise grape berry cuticular wax composition and identify contributing genes. The wax composition of two grape cultivars ('Deckrot' and G1-7720) and their progeny shifted from aldehyde to fatty acid accumulation during ripening while the composition was shown to influence Botrytis cinerea susceptibility. Alcohols and aldehydes contributed to the glaucous wax appearance while the bioactive triterpene, oleanolic acid, was found to be the most abundant wax monomer. Metabolic quantitative trait locus analysis identified several genomic regions associated with wax monomer formation, including a cluster on chromosome nine linked to triterpene content, which included eight putative triterpene synthases. Molecular phylogenetic analysis suggested these genes code for amyrin synthases. Co-expression analysis, and subsequent heterologous expression in yeast, confirmed the involvement of VvTTPS12 in oleanolic acid formation. This study explores the role of grape berry wax composition and enhances understanding of genetic contributors to wax formation.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143649144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evan A Perkowski, Ezinwanne Ezekannagha, Nicholas G Smith
{"title":"Nitrogen demand, availability, and acquisition strategy control plant responses to elevated CO2.","authors":"Evan A Perkowski, Ezinwanne Ezekannagha, Nicholas G Smith","doi":"10.1093/jxb/eraf118","DOIUrl":"https://doi.org/10.1093/jxb/eraf118","url":null,"abstract":"<p><p>Plants respond to increasing atmospheric CO2 concentrations by reducing leaf nitrogen content and photosynthetic capacity - patterns that correspond with increased net photosynthesis and growth. Despite the longstanding notion that nitrogen availability regulates these responses, eco-evolutionary optimality theory posits that leaf-level responses to elevated CO2 are driven by leaf nitrogen demand for building and maintaining photosynthetic enzymes and are independent of nitrogen availability. In this study, we examined leaf and whole-plant responses of Glycine max L. (Merr) subjected to full-factorial combinations of two CO2, two inoculation, and nine nitrogen fertilization treatments. Nitrogen fertilization and inoculation did not alter leaf photosynthetic responses to elevated CO2. Instead, elevated CO2 decreased the maximum rate of Rubisco carboxylation more strongly than it decreased the maximum rate of electron transport for RuBP regeneration, increasing net photosynthesis by allowing rate-limiting steps to approach optimal coordination. Increasing fertilization enhanced positive whole-plant responses to elevated CO2 due to increased belowground carbon allocation and nitrogen uptake. Inoculation with nitrogen-fixing bacteria did not influence plant responses to elevated CO2. These results reconcile the role of nitrogen availability on plant responses to elevated CO2, showing that leaf photosynthetic responses are regulated by leaf nitrogen demand while whole-plant responses are constrained by nitrogen availability.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143649167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Natural variation and CRISPR/Cas9 gene editing demonstrate the potential for a group VII ethylene response factor HvERF62 in regulating barley (Hordeum vulgare L.) waterlogging tolerance.","authors":"Juan Zhu, Yuhang Zhang, Mengna Zhang, Yi Hong, Chengqun Sun, Yu Guo, Haoxin Yin, Chao Lv, Baojian Guo, Feifei Wang, Rugen Xu","doi":"10.1093/jxb/eraf101","DOIUrl":"https://doi.org/10.1093/jxb/eraf101","url":null,"abstract":"<p><p>Waterlogging stress is a serious problem all over the world, which inhibits plant growth and development, and even leads to plant death in severe circumstances. Ethylene-responsive VII transcription factor (ERFVII) is a key factor regulating plant waterlogging tolerance. In this study, a major QTL conferring chlorophyll content under waterlogging stress was detected on chromosome 4H through GWAS using a natural population. Combined with RNA-Seq analysis, the group VII ethylene response factor HvERF62 was identified as the candidate gene. CRISPR/Cas9-guided knockout of HvERF62 mutants showed sensitivity to waterlogging, with lower chlorophyll content, less adventitious roots and lower root activity. Physiological and transcriptomic analyses showed that HvERF62 plays an important role in aerenchyma formation, ROS homeostasis and carbohydrate accumulation under waterlogging stress, and regulates waterlogging tolerance through starch and sucrose metabolism, MAPK signaling pathway, plant hormone signal transduction and glycolysis/gluconeogenesis signaling. Haplotype analysis showed that the amino acid coding of the waterlogging-intolerant haplotype Hap3 was terminated prematurely. This study provides a new genetic resource and a relevant marker for identification of waterlogging-sensitive materials and deepens our understanding of the molecular mechanisms of waterlogging response in barley.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms of the formation of acquired drought tolerance in wheat: insights from combining high-throughput phenotyping and genome-wide association study.","authors":"Qing Li, Shuming Fan, Junfeng Cao, Zhuangzhuang Sun, Chuan Zhong, Haijiang Min, Shaowei Liang, Xiao Wang, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang","doi":"10.1093/jxb/eraf124","DOIUrl":"https://doi.org/10.1093/jxb/eraf124","url":null,"abstract":"<p><p>Drought priming, a potential strategy to bolster wheat yield amidst recurring droughts. Identifying the responsive cultivars and deciphering the underlying mechanisms are vital to better activate the instinct of plants coping with drought stress. Here, responses of 157 wheat cultivars to drought priming were phenotyped using a high-throughput phenotyping (HTP) platform across two wheat-growing seasons. A drought priming index (DPI) was devised to assess the drought priming sensitivity for each wheat cultivar. Based on the DPI comprehensive score (DPICS) derived from 13 identified sensitive traits by principal component analysis, the significant DPICS variations led to the classification of the cultivars into two distinct groups. Drought priming sensitive group contains 58 cultivars, demonstrated higher DPI values for traits such as yield components, harvest index, post-anthesis assimilation, photochemical efficiency, canopy coverage, and NDVI, but lower DPI values for traits like pre-anthesis dry matter remobilization, non-photochemical quenching, plant senescence reflectance index, and canopy temperature. Genome-wide association study (GWAS) based on DPI identified 499 significant markers related to drought priming using Wheat660 SNP arrays. Notably, one marker situated on chromosome 5B consistently appeared in both years. This marker resides within a 261.2 Kb genomic block containing seven genes, including the candidate gene TraesCS5B03G1259700, which exhibited distinct transcriptional memory related to drought priming. Our results suggest integrating HTP and GWAS has great potential for deciphering the genetic basis of acquired drought tolerance induced by priming and may facilitate breeding smarter wheat varieties responding to recurred drought evens.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Otwani, Greg McLean, Graeme Hammer, Alan Cruickshank, Colleen Hunt, Yongfu Tao, Anna Koltunow, Emma Mace, David Jordan
{"title":"Extended grain filling has potential to improve yield in grain sorghum.","authors":"Daniel Otwani, Greg McLean, Graeme Hammer, Alan Cruickshank, Colleen Hunt, Yongfu Tao, Anna Koltunow, Emma Mace, David Jordan","doi":"10.1093/jxb/eraf117","DOIUrl":"https://doi.org/10.1093/jxb/eraf117","url":null,"abstract":"<p><p>Yield increase in sorghum has been achieved primarily by increasing grain number. Scope exists to increase yield by increasing grain size, however this has been limited by the negative correlation between grain size and grain number. Extending the duration of the grain filling period has potential to enable increased grain size without the trade-off with grain number. This study explored grain filling duration (GFD) in a diverse panel of 904 sorghum genotypes in three environments across two years. Significant variation in GFD observed, ranging from 400 to 680 degree-days, included entries with significantly longer GFD than current commercial hybrids. Longer GFD was shown to result in larger grain size. Additionally, only low associations between GFD and grain number per panicle, flowering time or plant height were observed, indicating that GFD could be manipulated without adverse penalty to these traits. A simulation study to estimate the benefit of an increased GFD across Australian sorghum growing environments over 60 years revealed positive impacts on yield when GFD was increased by either 10% or 20% in environments with low and mild post anthesis water stress but not in environments with sustained terminal water stress. However, maintaining overall crop duration by shortening time to flowering while extending GFD led to neutral or negative effects on yield. These results reveal opportunities to exploit GFD for improved genetic gains for yield in sorghum especially in environments or seasons where water does not become more limiting post anthesis.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PgMYB96 enhances Physalis grisea high temperature tolerance by activating trithorax-like factor WD REPEAT CONTAINING5b.","authors":"Guanzhuo Kong, Hong Li, Jintao Zheng, Yaru Zhao, Qiaofang Shi, Xiaochun Zhao, Yihe Yu","doi":"10.1093/jxb/eraf097","DOIUrl":"https://doi.org/10.1093/jxb/eraf097","url":null,"abstract":"<p><p>Under the general trend of global warming, high temperature stress (HTS) is an increasingly grievous challenge to the normal growth and development of crops. Exposure to high temperature (42°C) during the growth and development stages of Physalis grisea can result in the breakdown of antimicrobials, sterility of pollen, and diminished yields. In this study, trithorax-like factor PgWDR5b was functionally analysed in response to high temperature stress in P. grisea. PgWDR5b expression was enhanced through treatments with HTS and abscisic acid (ABA), PgWDR5b promoted the level of expression of downstream ABA synthesis genes after HTS, and positively contributes to tolerance to high temperature stress in P. grisea. In addition, the transcription factor PgMYB96 binds the promoter of PgWDR5b. Silencing both PgWDR5b and PgMYB96 reduced the high temperature tolerance of the P. grisea, as well as the synthesis genes for ABA showed decreased expression while the catabolic genes had increased levels of expression. The results of overexpression assay were contrary. Furthermore, ABA directly activates PgWDR5b expression. These results collectively suggest that PgMYB96 can both regulate PgWDR5b expression by affecting ABA synthesis and directly activate PgWDR5b transcription. Hence, PgWDR5b can participate in the high temperature stress response of P. grisea through the metabolic pathway of ABA and establishes a positive feedback regulatory mechanism with ABA.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The zinc finger transcription factor MtSTOP1 modulates aluminum resistance and low pH tolerance in Medicago truncatula.","authors":"Dehui Jin, Jinlong Chen, Chengcheng Yan, Xiaoqing Liu, Yujie Lin, Zhen Li, Zhenfei Guo, Yang Zhang","doi":"10.1093/jxb/eraf112","DOIUrl":"https://doi.org/10.1093/jxb/eraf112","url":null,"abstract":"<p><p>In acidic soils, aluminum (Al) is a primary factor that inhibits plant growth. SENSITIVE-TO-PROTON-RHIZOTOXICITY1 (STOP1), which is accumulated in the nucleus in response to Al or low pH, regulates multiple downstream genes to counteract Al toxicity and acid stress. Here, we discovered four STOP1-like proteins in Medicago truncatula, which are localized in the nucleus and display transcriptional activity. Among them, the expression of MtSTOP1 (the ortholog of AtSTOP1) and MtSTOP2 is slightly induced by Al in the root tips. CRISPR/Cas9-mediated knockout of MtSTOP1 resulted in increased Al and low pH sensitivity. Transcriptomic analysis revealed 110 genes that were differentially downregulated in the Mtstop1 compared to the wild-type under both pH 5.0 and pH 5.0 with Al. qRT-PCR analysis confirmed that MtSTOP1 regulates the expression of several Al-induced genes and MtSTOP2. The mutation of MtSTOP4 significantly decreases the expression of specific Al tolerance genes and compromises Al tolerance, yet less severely than the mutation of MtSTOP1. Furthermore, the double mutant Mtstop1Mtstop4 did not exhibit increased Al sensitivity compared to Mtstop1 alone, suggesting that MtSTOP1 and MtSTOP4 likely function in a cooperative rather than additive manner. Additionally, we found that the C-terminal of F-box protein MtRAE1 interacts with both MtSTOP1 and MtSTOP4. Our study offers significant insights into the transcriptional regulatory mechanisms that respond to Al and acid stress in M. truncatula.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geng Chen, Qiu-Xia Ran, Cai Wang, Jiayin Pang, Ming-Jian Ren, Zheng-Yu Wang, Jin He, Hans Lambers
{"title":"Enhancing photosynthetic phosphorus use efficiency through coordination of leaf phosphorus fractions, allocation, and anatomy during soybean domestication.","authors":"Geng Chen, Qiu-Xia Ran, Cai Wang, Jiayin Pang, Ming-Jian Ren, Zheng-Yu Wang, Jin He, Hans Lambers","doi":"10.1093/jxb/erae427","DOIUrl":"10.1093/jxb/erae427","url":null,"abstract":"<p><p>Soybean domestication has significantly changed key agronomic traits, yet its impact on leaf photosynthetic phosphorus use efficiency (PPUE) and its underlying traits remains poorly known. Further information on this would be important to increase soybean P use efficiency. To address this gap, 48 soybean accessions (16 wild relatives, 16 landraces, and 16 cultivars) were used to compare leaf anatomical traits, foliar chemical P fractions, P allocation, and PPUE under two P levels. The results showed that the cultivars had higher area-based and mass-based photosynthesis rates, PPUE, metabolite P concentration, and its percentage of leaf total P, as well as a greater percentage of lipid P, nucleic acid P, and residual P. Conversely, wild relatives tended to have higher leaf P concentration, palisade:spongy thickness ratio, and concentrations of inorganic P, nucleic acid P, lipid P, and residual P. PPUE was negatively correlated with leaf inorganic P concentration and its percentage relative to leaf total P, while it was positively correlated with the concentration and percentage of metabolite P. We concluded that soybean domestication increased PPUE, as a result of both increased photosynthesis rate and decreased leaf P concentration; domestication reduced the palisade:spongy thickness ratio coupled with increased allocation of P to P-containing metabolites, thereby contributing to faster photosynthesis and higher PPUE. This study sheds light on the significance of leaf P allocation and anatomical traits affecting PPUE during soybean domestication, offering a mechanistic understanding to further enhance soybean P use efficiency.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"1446-1457"},"PeriodicalIF":5.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suhaib Ahmad, Hafiza Madeeha Khan, Amjad Nawaz, Muhammad Abdul Samad, Huikyong Cho, Hira Sarfraz, Yasir Aziz, Hatem Rouached, Zaigham Shahzad
{"title":"Genome-wide association studies and transcriptomics reveal mechanisms explaining the diversity of wheat root responses to nutrient availability.","authors":"Suhaib Ahmad, Hafiza Madeeha Khan, Amjad Nawaz, Muhammad Abdul Samad, Huikyong Cho, Hira Sarfraz, Yasir Aziz, Hatem Rouached, Zaigham Shahzad","doi":"10.1093/jxb/erae141","DOIUrl":"10.1093/jxb/erae141","url":null,"abstract":"<p><p>Nutrient availability profoundly influences plant root system architecture, which critically determines crop productivity. While Arabidopsis has provided important insights into the genetic responses to nutrient deficiency, translating this knowledge to crops, particularly wheat, remains a subject of inquiry. Here, examining a diverse wheat population under varying nitrogen (N), phosphorus (P), potassium (K), and iron (Fe) levels, we uncover a spectrum of root responses, spanning from growth inhibition to stimulation, highlighting genotype-specific strategies. Furthermore, we reveal a nuanced interplay between macronutrient deficiency (N, P, and K) and Fe availability, emphasizing the central role of Fe in modulating root architecture. Through genome-wide association mapping, we identify 11 quantitative trait loci underlying root traits under varying nutrient availabilities, including homologous genes previously validated in Arabidopsis, supporting our findings. In addition, utilizing transcriptomics, reactive oxygen species (ROS) imaging, and antioxidant treatment, we uncover that wheat root growth inhibition by nutrient deficiency is attributed to ROS accumulation, akin to the role of ROS in governing Arabidopsis root responses to nutrient deficiency. Therefore, our study reveals the conservation of molecular and physiological mechanisms between Arabidopsis and wheat to adjust root growth to nutrient availability, paving the way for targeted crop improvement strategies aimed at increasing nutrient use efficiency.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"1458-1472"},"PeriodicalIF":5.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in breeding for enhanced iron and zinc concentrations in common bean in eastern Africa.","authors":"Paul M Kimani","doi":"10.1093/jxb/eraf009","DOIUrl":"10.1093/jxb/eraf009","url":null,"abstract":"<p><p>Micronutrient malnutrition is one of the most serious health challenges facing vast sectors of the population of Africa, particularly resource-poor women and children. The main deficiencies include iron (Fe), zinc (Zn), and vitamin A. Plant breeding has frequently been advocated as the most sustainable strategy to provide varieties of different food crop species with enhanced micronutrient density to combat the global hidden hunger problem which affects >2 billion people. However, there are few research programmes which have implemented this approach, from concept stage to finished products, which can be widely disseminated and commercialized to create meaningful impact. The east African bean biofortification programme offers a case study of such a programme. The aim of this programme was to develop well-adapted, high-yielding, Fe- and Zn-rich bush and climbing bean cultivars and agronomic approaches that enhance expression of the high mineral trait. The objective of this review is to provide a synthesis of the progress made in the last 22 years, with a focus on genetic diversity, inheritance, bioavailability of Fe and Zn, and cooking quality, as well as to identify research gaps and suggest future directions.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"1390-1407"},"PeriodicalIF":5.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}