细胞色素P450 CYP72A1182在苋属植物代谢性抗除草剂进化中的作用

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Carlos Alberto Gonsiorkiewicz Rigon, Anita Küpper, Crystal Sparks, Jacob Montgomery, Falco Peter, Simon Schepp, Alejandro Perez-Jones, Patrick J Tranel, Roland Beffa, Franck E Dayan, Todd A Gaines
{"title":"细胞色素P450 CYP72A1182在苋属植物代谢性抗除草剂进化中的作用","authors":"Carlos Alberto Gonsiorkiewicz Rigon, Anita Küpper, Crystal Sparks, Jacob Montgomery, Falco Peter, Simon Schepp, Alejandro Perez-Jones, Patrick J Tranel, Roland Beffa, Franck E Dayan, Todd A Gaines","doi":"10.1093/jxb/eraf114","DOIUrl":null,"url":null,"abstract":"<p><p>Evolution of metabolic herbicide resistance is a major issue for weed management. Few genes and regulatory mechanisms have been identified, particularly in dicotyledonous weed species. We identified putative causal genes and regulatory mechanism for tembotrione-resistance in Amaranthus palmeri. Cytochrome P450 candidate genes were identified through RNA-seq analysis. We validated their functions using heterologous expression in S. cerevisae. Promoters of the candidate P450 genes were analyzed. We performed QTL mapping to identify genomic regions associated with resistance. CYP72A1182 metabolized tembotrione in heterologous system. This gene had increased expression in other A. palmeri populations resistant to multiple herbicides, including tembotrione. Resistant plants exhibited polymorphisms in the promoter of CYP72A1182. We identified QTLs linked to herbicide resistance, including one on chromosome 4 approximately 3 Mb away from CYP72A1182. CYP72A1182 is likely involved in tembotrione resistance in A. palmeri. Increased expression of this gene could be due to cis-regulation in the promoter, as well as trans-regulation from transcription factors. Further studies are in progress to test this hypothesis. The elucidation of regulatory genes is crucial for developing innovative weed management approaches and target-based novel herbicide molecules.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function of Cytochrome P450 CYP72A1182 in Metabolic Herbicide Resistance Evolution in Amaranthus palmeri Populations.\",\"authors\":\"Carlos Alberto Gonsiorkiewicz Rigon, Anita Küpper, Crystal Sparks, Jacob Montgomery, Falco Peter, Simon Schepp, Alejandro Perez-Jones, Patrick J Tranel, Roland Beffa, Franck E Dayan, Todd A Gaines\",\"doi\":\"10.1093/jxb/eraf114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evolution of metabolic herbicide resistance is a major issue for weed management. Few genes and regulatory mechanisms have been identified, particularly in dicotyledonous weed species. We identified putative causal genes and regulatory mechanism for tembotrione-resistance in Amaranthus palmeri. Cytochrome P450 candidate genes were identified through RNA-seq analysis. We validated their functions using heterologous expression in S. cerevisae. Promoters of the candidate P450 genes were analyzed. We performed QTL mapping to identify genomic regions associated with resistance. CYP72A1182 metabolized tembotrione in heterologous system. This gene had increased expression in other A. palmeri populations resistant to multiple herbicides, including tembotrione. Resistant plants exhibited polymorphisms in the promoter of CYP72A1182. We identified QTLs linked to herbicide resistance, including one on chromosome 4 approximately 3 Mb away from CYP72A1182. CYP72A1182 is likely involved in tembotrione resistance in A. palmeri. Increased expression of this gene could be due to cis-regulation in the promoter, as well as trans-regulation from transcription factors. Further studies are in progress to test this hypothesis. The elucidation of regulatory genes is crucial for developing innovative weed management approaches and target-based novel herbicide molecules.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf114\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

代谢性除草剂抗性的进化是杂草管理的主要问题。很少有基因和调控机制被确定,特别是在双子叶杂草物种中。我们确定了推定的棕榈苋耐药的致病基因和调控机制。通过RNA-seq分析鉴定细胞色素P450候选基因。我们通过在酿酒酵母中的异种表达验证了它们的功能。分析候选P450基因的启动子。我们进行了QTL定位,以确定与抗性相关的基因组区域。CYP72A1182在异源系统中代谢替替曲酮。该基因在其他抗多种除草剂(包括替博曲酮)的棕榈草群体中表达增加。抗性植物在CYP72A1182启动子上表现出多态性。我们发现了与除草剂抗性相关的qtl,其中一个位于距离CYP72A1182约3mb的4号染色体上。CYP72A1182可能与palmeri对tembotrione的耐药性有关。该基因的表达增加可能是由于启动子的顺式调控,以及转录因子的反式调控。进一步的研究正在进行中以验证这一假设。阐明调控基因对于开发创新的杂草管理方法和基于靶标的新型除草剂分子至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function of Cytochrome P450 CYP72A1182 in Metabolic Herbicide Resistance Evolution in Amaranthus palmeri Populations.

Evolution of metabolic herbicide resistance is a major issue for weed management. Few genes and regulatory mechanisms have been identified, particularly in dicotyledonous weed species. We identified putative causal genes and regulatory mechanism for tembotrione-resistance in Amaranthus palmeri. Cytochrome P450 candidate genes were identified through RNA-seq analysis. We validated their functions using heterologous expression in S. cerevisae. Promoters of the candidate P450 genes were analyzed. We performed QTL mapping to identify genomic regions associated with resistance. CYP72A1182 metabolized tembotrione in heterologous system. This gene had increased expression in other A. palmeri populations resistant to multiple herbicides, including tembotrione. Resistant plants exhibited polymorphisms in the promoter of CYP72A1182. We identified QTLs linked to herbicide resistance, including one on chromosome 4 approximately 3 Mb away from CYP72A1182. CYP72A1182 is likely involved in tembotrione resistance in A. palmeri. Increased expression of this gene could be due to cis-regulation in the promoter, as well as trans-regulation from transcription factors. Further studies are in progress to test this hypothesis. The elucidation of regulatory genes is crucial for developing innovative weed management approaches and target-based novel herbicide molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信