Journal of Experimental Botany最新文献

筛选
英文 中文
LIPID RICH 1 Modulates Allocation of Carbon between Starch and Triacylglycerol in Arabidopsis Leaves.
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-08 DOI: 10.1093/jxb/eraf048
Mebae Yamaguchi, Shuji Shigenobu, Katsushi Yamaguchi, Yasuhiro Higashi, Yozo Okazaki, Kazuki Saito, Emi Mishiro-Sato, Keiko Kano, Ryosuke Sugiyama, Mami Yamazaki, Shigeo S Sugano, Shuichi Fukuyoshi, Haruko Ueda, Ikuko Hara-Nishimura, Takashi L Shimada
{"title":"LIPID RICH 1 Modulates Allocation of Carbon between Starch and Triacylglycerol in Arabidopsis Leaves.","authors":"Mebae Yamaguchi, Shuji Shigenobu, Katsushi Yamaguchi, Yasuhiro Higashi, Yozo Okazaki, Kazuki Saito, Emi Mishiro-Sato, Keiko Kano, Ryosuke Sugiyama, Mami Yamazaki, Shigeo S Sugano, Shuichi Fukuyoshi, Haruko Ueda, Ikuko Hara-Nishimura, Takashi L Shimada","doi":"10.1093/jxb/eraf048","DOIUrl":"https://doi.org/10.1093/jxb/eraf048","url":null,"abstract":"<p><p>Plants accumulate starch and triacylglycerols (TAGs) as carbon sources. Leaves primarily store starch in chloroplasts, with some TAGs stored in lipid droplets, but how carbon resource allocation is regulated in leaves during cellular metabolism is largely unknown. Using a forward genetics approach, we isolated an Arabidopsis thaliana mutant with more lipid droplets in its leaves than the wild type, named lipid rich 1 (liri1). The overaccumulation of lipid droplets was caused by the loss of function in the causal gene, encoding an uncharacterized protein. TAG levels were five-fold higher and starch levels two-fold lower in the leaves of liri1 than the wild type. LIRI1 localized to the chloroplasts, and the contents of chloroplast membrane lipids were 20% higher in liri1 leaves than in wild-type leaves. Co-immunoprecipitation assays revealed that LIRI1 interacts with acetyl-coenzyme A carboxylase carboxyltransferase alpha subunit (an enzyme for fatty acid biosynthesis) and starch synthase 4 (an enzyme for starch biosynthesis). In isotope tracer experiments using [1-13C]-sodium acetate, more 13C was incorporated into TAGs in liri1 leaves than in wild-type leaves. Moreover, liri1 plants showed growth defects and irregular chloroplasts. These results suggest that LIRI1 affects the carbon trade-off to inhibit lipid production in leaves.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating cold hardiness and deacclimation resistance demonstrates a conserved response to chilling accumulation in grapevines.
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-08 DOI: 10.1093/jxb/eraf045
Jason P Londo, Al P Kovaleski
{"title":"Integrating cold hardiness and deacclimation resistance demonstrates a conserved response to chilling accumulation in grapevines.","authors":"Jason P Londo, Al P Kovaleski","doi":"10.1093/jxb/eraf045","DOIUrl":"https://doi.org/10.1093/jxb/eraf045","url":null,"abstract":"<p><p>To survive the harsh conditions of winter, woody perennial species such as grapevine have adapted to use environmental cues to trigger physiological changes to induce dormancy, acquire cold hardiness, and measure the length of winter to properly time spring budbreak. Human induced climate change disrupts these cues by prolonging warm temperatures in fall, reducing the depth and consistency of midwinter, and triggering early budbreak through false spring events. We evaluated variation in dormant bud cold hardiness and chilling hour requirements of 31 different grapevine varieties over 3 years. Differential thermal analysis was used to track changes in cold hardiness and deacclimation resistance was assessed throughout the season to track dormancy progression. Results demonstrate wide variation in maximum deacclimation rate (1.03 - 2.87 °C/day) among varieties under forcing conditions. Significant correlations were noted between wild species distributions or cultivar provenance with cold hardiness and deacclimation rates, demonstrating the likely climate-adaptive nature of these traits. When integrated with variation in cold hardiness, these rates revealed a relationship between winter cold hardiness, changes in deacclimation rate and budbreak phenology. Standardizing rates among varieties as deacclimation potential demonstrated a conserved response to chilling exposure among varieties that alters our interpretation of the concept of high and low chill varieties and chilling requirement in grapevine.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ethylene signaling is essential for mycorrhiza-induced resistance against chewing herbivores in tomato.
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-08 DOI: 10.1093/jxb/eraf053
Javier Lidoy, Javier Rivero, Živa Ramšak, Marko Petek, Maja Križnik, Victor Flors, Juan A Lopez-Raez, Ainhoa Martinez-Medina, Kristina Gruden, Maria J Pozo
{"title":"Ethylene signaling is essential for mycorrhiza-induced resistance against chewing herbivores in tomato.","authors":"Javier Lidoy, Javier Rivero, Živa Ramšak, Marko Petek, Maja Križnik, Victor Flors, Juan A Lopez-Raez, Ainhoa Martinez-Medina, Kristina Gruden, Maria J Pozo","doi":"10.1093/jxb/eraf053","DOIUrl":"https://doi.org/10.1093/jxb/eraf053","url":null,"abstract":"<p><p>Arbuscular mycorrhizal (AM) symbiosis can prime plant defenses, leading to mycorrhiza-induced resistance (MIR) against different attackers, including insect herbivores. Still, our knowledge of the complex molecular regulation leading to MIR is very limited. Here, we show that the AM fungus Funneliformis mosseae protects tomato plants against two different chewing herbivores, Spodoptera exigua and Manduca sexta. We explore the underlying molecular mechanism through genome-wide transcriptional profiling, bioinformatics network analyses, and functional bioassays. Herbivore-triggered JA-regulated defenses were primed in leaves of mycorrhizal plants, while ET biosynthesis and signaling were also higher both before and after herbivory. We hypothesized that fine-tuned ET signaling is required for the primed defensive response leading to MIR. ET is a complex regulator of plant responses to stress and is generally considered a negative regulator of plant defenses against herbivory. However, ET-deficient or insensitive lines did not show AM-primed JA biosynthesis or defense response, and were unable to develop MIR against any of the herbivores. Thus, we demonstrate that hormone crosstalk is central to the priming of plant immunity by beneficial microbes, with ET fine-tuning being essential for the primed JA biosynthesis and boosted defenses leading to MIR in tomato.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid transfer protein VAS inhibits the hypersensitive response via reactive oxygen species signaling in Nicotiana benthamiana.
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-08 DOI: 10.1093/jxb/erae473
Rina Koyama, Akira Suzuki, Kouhei Ohnishi, Yasufumi Hikichi, Akinori Kiba
{"title":"Lipid transfer protein VAS inhibits the hypersensitive response via reactive oxygen species signaling in Nicotiana benthamiana.","authors":"Rina Koyama, Akira Suzuki, Kouhei Ohnishi, Yasufumi Hikichi, Akinori Kiba","doi":"10.1093/jxb/erae473","DOIUrl":"https://doi.org/10.1093/jxb/erae473","url":null,"abstract":"<p><p>Lipid transfer proteins (LTPs) are small cysteine-rich soluble proteins that affect flower and seed development, cuticular wax deposition, and biotic and abiotic stress responses. We isolated an LTP-encoding gene homologous to LTPVAS in Nicotiana benthamiana and designated it LTP-VASCULAR TISSUE SIZE (NbLTPVAS). This gene was expressed in seeds, leaves, roots, and stems. Additionally, NbLTPVAS expression was induced by hypersensitive response (HR)-inducing agents. Cell death was accelerated and the phytopathogenic bacterial population decreased significantly in NbLTPVAS-silenced plants infected with the incompatible Ralstonia solanacearum strain 8107. The expression of HR marker gene hin1 in NbLTPVAS-silenced plants was markedly induced by R. solanacearum 8107, indicative of the acceleration of HR. HR cell death in NbLTPVAS-silenced plants was also promoted by the Agrobacterium-mediated expression of HR-inducing proteins including INF1, AvrA, and PopP1. Excessive production of reactive oxygen species (ROS) was detected in NbLTPVAS-silenced plants. The expression of NbrbohB (encoding a ROS-generating enzyme) also increased in NbLTPVAS-silenced plants, but the expression of the antioxidant enzyme-encoding genes NbSOD and NbAPX decreased. The silencing of both NbLTPVAS and NbrbohB adversely affected HR induction. Moreover, NbLTPVAS was secreted into the intercellular washing fluid. The transient expression of the full-length NbLTPVAS induced the expression of antioxidant genes, attenuated ROS production, and suppressed the induction of HR cell death. This is the first functional analysis of LTPVAS in plant-microbe interactions. Our study provides novel insights into the role of NbLTPVAS as a negative regulator of HR via ROS homeostasis in N. benthamiana.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene-Based Model To Predict Heading Date In Wheat Based On Allelic Characterization And Environmental Drivers.
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-07 DOI: 10.1093/jxb/eraf049
Mariana R Jardón, Santiago Alvarez-Prado, Leonardo Vanzetti, Fernanda G Gonzalez, Thomas Pérez-Gianmarco, Dionisio Gómez, Román A Serrago, Jorge Dubcovsky, Maria Elena Fernandez Long, Daniel J Miralles
{"title":"Gene-Based Model To Predict Heading Date In Wheat Based On Allelic Characterization And Environmental Drivers.","authors":"Mariana R Jardón, Santiago Alvarez-Prado, Leonardo Vanzetti, Fernanda G Gonzalez, Thomas Pérez-Gianmarco, Dionisio Gómez, Román A Serrago, Jorge Dubcovsky, Maria Elena Fernandez Long, Daniel J Miralles","doi":"10.1093/jxb/eraf049","DOIUrl":"https://doi.org/10.1093/jxb/eraf049","url":null,"abstract":"<p><p>While numerous wheat phenology prediction models are available, most of them are constrained to using variety-dependent coefficients. The overarching objective of this study was to calibrate a gene-based model to predict wheat heading date that allows breeders to select specific gene combinations that would head within the optimal window for a given environment independently of varietal genetic background. A dataset with a total of 49 Argentine wheat cultivars and two recombinant inbred lines was chosen to cover a wide range of allelic combinations for major vernalization, photoperiod, and earliness per-se genes. The model was validated using independent data from an Argentine wheat trial network that includes sites from a wide latitudinal range. Ultimately, using this gene-based model, simulations were made to identify optimal gene combinations (ideotypes) × site combinations in contrasting locations. The selected model accurately predicted heading date with an overall median error of 4.6 days. This gene-based crop model for wheat phenology allowed the identification of groups of gene combinations predicted to head within a low-risk window and can be adapted to predict other phenological stages based on accessible climatic information and publicly available molecular markers, facilitating its adoption in wheat-growing regions worldwide.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lights, location, action: shade avoidance signalling over spatial scales. 灯光、位置、行动:空间尺度上的避阴信号。
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-07 DOI: 10.1093/jxb/erae217
Pierre Gautrat, Sanne E A Matton, Lisa Oskam, Siddhant S Shetty, Kyra J van der Velde, Ronald Pierik
{"title":"Lights, location, action: shade avoidance signalling over spatial scales.","authors":"Pierre Gautrat, Sanne E A Matton, Lisa Oskam, Siddhant S Shetty, Kyra J van der Velde, Ronald Pierik","doi":"10.1093/jxb/erae217","DOIUrl":"10.1093/jxb/erae217","url":null,"abstract":"<p><p>Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"695-711"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141064313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance. 充分利用树冠光:在波动的光谱和辐照度条件下避免遮荫。
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-07 DOI: 10.1093/jxb/erae334
Romina Sellaro, Maxime Durand, Pedro J Aphalo, Jorge J Casal
{"title":"Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance.","authors":"Romina Sellaro, Maxime Durand, Pedro J Aphalo, Jorge J Casal","doi":"10.1093/jxb/erae334","DOIUrl":"10.1093/jxb/erae334","url":null,"abstract":"<p><p>In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"712-729"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Hyperspectral imaging for chloroplast movement detection.
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-07 DOI: 10.1093/jxb/eraf043
{"title":"Correction to: Hyperspectral imaging for chloroplast movement detection.","authors":"","doi":"10.1093/jxb/eraf043","DOIUrl":"https://doi.org/10.1093/jxb/eraf043","url":null,"abstract":"","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lighting the path: how light signaling regulates stomatal movement and plant immunity. 照亮路径:光信号如何调节气孔运动和植物免疫。
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-07 DOI: 10.1093/jxb/erae475
Nidhi Singh, Mrunmay Kumar Giri, Debasis Chattopadhyay
{"title":"Lighting the path: how light signaling regulates stomatal movement and plant immunity.","authors":"Nidhi Singh, Mrunmay Kumar Giri, Debasis Chattopadhyay","doi":"10.1093/jxb/erae475","DOIUrl":"10.1093/jxb/erae475","url":null,"abstract":"<p><p>Stomata, the small pores on the surfaces of plant leaves and stems, are crucial for gas exchange and also play a role in defense against pathogens. Stomatal movement is influenced not only by surrounding light conditions but also by the presence of foliar pathogens. Certain light wavelengths such as blue or high irradiance red light cause stomatal opening, making it easier for bacteria to enter through opened stomata and causing disease progression in plants. Illumination with blue or intense red light autophosphorylates phototropin, a blue light photoreceptor protein kinase, that in turn activates a signaling cascade to open the stomata. Undoubtedly stomatal defense is a fascinating aspect of plant immunology, especially in plant-foliar pathogen interactions. During these interactions, stomata fundamentally serve as entry points for intrusive pathogens and initiate the plant defense signaling cascade. This review highlights how light-activated photoreceptors such as cryptochromes (CRYs), phytochromes (phys), and UV-receptors (UVRs) influence stomatal movement and defense signaling after foliar pathogen intrusion. It also explores the link between stomatal defense, light signaling, and plant immunity, which is vital for safeguarding crops against pathogens.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"769-786"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-coding and epigenetic mechanisms in the regulation of seed germination in Arabidopsis thaliana.
IF 5.6 2区 生物学
Journal of Experimental Botany Pub Date : 2025-02-07 DOI: 10.1093/jxb/eraf051
Benjamin Jm Tremblay, Julia I Qüesta
{"title":"Non-coding and epigenetic mechanisms in the regulation of seed germination in Arabidopsis thaliana.","authors":"Benjamin Jm Tremblay, Julia I Qüesta","doi":"10.1093/jxb/eraf051","DOIUrl":"https://doi.org/10.1093/jxb/eraf051","url":null,"abstract":"<p><p>Seed germination as a developmental process has been extensively studied using the model plant Arabidopsis thaliana. Its seed biology is generally well understood, from the regulation of seed maturation and dormancy to germination and the post-germinative transition. These events require, and are the result of, extensive transcriptional reprogramming which importantly are mediated by essential epigenetic mechanisms such as DNA methylation, different histone variants and modifications, as well as by non-coding regulatory RNAs. Studying these mechanisms therefore is essential for understanding the regulation of gene expression during germination. In this review we summarize our current knowledge of these mechanisms in the context of Arabidopsis thaliana seed biology and discuss aspects requiring further study.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信