{"title":"基质石孢在有机磷矿化和AM真菌生长中的宿主依赖性作用。","authors":"Ningkang Sun, Letian Wang, Gu Feng","doi":"10.1093/jxb/eraf339","DOIUrl":null,"url":null,"abstract":"<p><p>The plant-arbuscular mycorrhizal (AM) fungi-hyphosphere bacteria forms a cross-kingdom holobiont driven by top-down carbon flow and bottom-up phosphorus (P) fluxes. Hyphosphere keystone bacteria, such as Massilia, can compensate for the limited capacity of AM fungi to mobilize organic phosphorus (Po), thereby enhancing fungal development and plant performance. However, how Massilia modulates its functional role across plant-fungal combinations remains unclear. To address this, we employed three plant-AM fungi pairings (medicago, maize, and sorghum) combined with either single Massilia inoculation or a defined synthetic hyphosphere bacterial community (SynCom). Across all combinations, Massilia significantly enhanced shoot biomass, plant P content, phosphatase activity, and Po mineralization. Interestingly, its effects were amplified by SynCom co-inoculation in maize and sorghum, while in medicago hyphosphere, Massilia alone was more effective. Community profiling revealed host-specific Massilia-mediated recruitment of bacteria with high phosphatase activity and indole-3-acetic acid production. Our findings demonstrate that, as a hyphosphere keystone taxon, Massilia adopts host-dependent functional strategies-promoting AM fungal growth and Po mineralization in medicago through phosphatase production, while relying on the growth-stimulation of beneficial bacteria to mediate similar effects in maize and sorghum.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host-dependent roles of hyphosphere keystone Massilia in organic phosphorus mineralization and AM fungal growth.\",\"authors\":\"Ningkang Sun, Letian Wang, Gu Feng\",\"doi\":\"10.1093/jxb/eraf339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The plant-arbuscular mycorrhizal (AM) fungi-hyphosphere bacteria forms a cross-kingdom holobiont driven by top-down carbon flow and bottom-up phosphorus (P) fluxes. Hyphosphere keystone bacteria, such as Massilia, can compensate for the limited capacity of AM fungi to mobilize organic phosphorus (Po), thereby enhancing fungal development and plant performance. However, how Massilia modulates its functional role across plant-fungal combinations remains unclear. To address this, we employed three plant-AM fungi pairings (medicago, maize, and sorghum) combined with either single Massilia inoculation or a defined synthetic hyphosphere bacterial community (SynCom). Across all combinations, Massilia significantly enhanced shoot biomass, plant P content, phosphatase activity, and Po mineralization. Interestingly, its effects were amplified by SynCom co-inoculation in maize and sorghum, while in medicago hyphosphere, Massilia alone was more effective. Community profiling revealed host-specific Massilia-mediated recruitment of bacteria with high phosphatase activity and indole-3-acetic acid production. Our findings demonstrate that, as a hyphosphere keystone taxon, Massilia adopts host-dependent functional strategies-promoting AM fungal growth and Po mineralization in medicago through phosphatase production, while relying on the growth-stimulation of beneficial bacteria to mediate similar effects in maize and sorghum.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf339\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf339","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Host-dependent roles of hyphosphere keystone Massilia in organic phosphorus mineralization and AM fungal growth.
The plant-arbuscular mycorrhizal (AM) fungi-hyphosphere bacteria forms a cross-kingdom holobiont driven by top-down carbon flow and bottom-up phosphorus (P) fluxes. Hyphosphere keystone bacteria, such as Massilia, can compensate for the limited capacity of AM fungi to mobilize organic phosphorus (Po), thereby enhancing fungal development and plant performance. However, how Massilia modulates its functional role across plant-fungal combinations remains unclear. To address this, we employed three plant-AM fungi pairings (medicago, maize, and sorghum) combined with either single Massilia inoculation or a defined synthetic hyphosphere bacterial community (SynCom). Across all combinations, Massilia significantly enhanced shoot biomass, plant P content, phosphatase activity, and Po mineralization. Interestingly, its effects were amplified by SynCom co-inoculation in maize and sorghum, while in medicago hyphosphere, Massilia alone was more effective. Community profiling revealed host-specific Massilia-mediated recruitment of bacteria with high phosphatase activity and indole-3-acetic acid production. Our findings demonstrate that, as a hyphosphere keystone taxon, Massilia adopts host-dependent functional strategies-promoting AM fungal growth and Po mineralization in medicago through phosphatase production, while relying on the growth-stimulation of beneficial bacteria to mediate similar effects in maize and sorghum.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.