Yang Yang, Zhong Tang, Wen-Wen Zhang, Xin-Yuan Huang, Fang-Jie Zhao
{"title":"The Chloroplast-Localized ABC Transporter OsABCB24 Regulates Aleurone Cell Size and Grain Nutritional Quality in Rice by Modulating Auxin Homeostasis.","authors":"Yang Yang, Zhong Tang, Wen-Wen Zhang, Xin-Yuan Huang, Fang-Jie Zhao","doi":"10.1093/jxb/eraf445","DOIUrl":null,"url":null,"abstract":"<p><p>The aleurone in cereal grains is an outer cell layer enriched with multiple nutrients important for human health. Enhancing the thickness of the aleurone layer through breeding could improve the nutritional value of rice. In this study, we characterized OsABCB24, a member of the ABCB transporter subfamily gene in rice, and its role in regulating aleurone development. Expression profiling revealed that OsABCB24 is predominantly expressed in seedling leaves and developing caryopsis, particularly in aleurone layer cells during grain filling. Subcellular localization analyses via protoplast transfection and immunogold labeling demonstrated that OsABCB24 is localized to the chloroplast. Knockout of OsABCB24 significantly increased thickness of the aleurone cells and elevated the concentrations of minerals such as phosphorus, potassium, zinc, magnesium, and copper in brown rice. Knockout of OsABCB24 also decreased the concentrations of free and conjugated indole-3-acetic acid (IAA) in developing caryopsis and increased the leaf angle by influencing cell proliferation and elongation on the adaxial side of the lamina joint at seedling stage. Leaf angle was less sensitive to exogenous IAA in osabcb24 mutants than in wild type. Taken together, these findings suggest that OsABCB24 is a negative regulator of aleurone cell expansion possibly by modulating auxin homeostasis. OsABCB24 is a promising genetic target for breeding rice with increased aleurone thickness and nutrient concentrations without yield penalty.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf445","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aleurone in cereal grains is an outer cell layer enriched with multiple nutrients important for human health. Enhancing the thickness of the aleurone layer through breeding could improve the nutritional value of rice. In this study, we characterized OsABCB24, a member of the ABCB transporter subfamily gene in rice, and its role in regulating aleurone development. Expression profiling revealed that OsABCB24 is predominantly expressed in seedling leaves and developing caryopsis, particularly in aleurone layer cells during grain filling. Subcellular localization analyses via protoplast transfection and immunogold labeling demonstrated that OsABCB24 is localized to the chloroplast. Knockout of OsABCB24 significantly increased thickness of the aleurone cells and elevated the concentrations of minerals such as phosphorus, potassium, zinc, magnesium, and copper in brown rice. Knockout of OsABCB24 also decreased the concentrations of free and conjugated indole-3-acetic acid (IAA) in developing caryopsis and increased the leaf angle by influencing cell proliferation and elongation on the adaxial side of the lamina joint at seedling stage. Leaf angle was less sensitive to exogenous IAA in osabcb24 mutants than in wild type. Taken together, these findings suggest that OsABCB24 is a negative regulator of aleurone cell expansion possibly by modulating auxin homeostasis. OsABCB24 is a promising genetic target for breeding rice with increased aleurone thickness and nutrient concentrations without yield penalty.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.