{"title":"A conserved AINTEGUMENTA-REVOLUTA module is a candidate to regulate carpel development in Lychee.","authors":"Huimin Hu, Xurong Fan, Qiuping Wu, Yanyang Liang, Yaxuan Xiao, Chengjie Chen, Fengqi Wu, Jiakun Zheng, Rui Xia, Jing Xu, Yanwei Hao, Zaohai Zeng","doi":"10.1093/jxb/eraf438","DOIUrl":null,"url":null,"abstract":"<p><p>The lychee industry is vital to agricultural economies, boosting farmer livelihoods and regional growth. However, instability of flowering causes yield fluctuations, severely limiting industry sustainability. Stable pistil development in female flowers is essential for yield improvement, yet its molecular regulation remains poorly understood. Although AP2 transcription factors regulate floral organ differentiation and pistil development, their functional role in woody perennials like lychee is uncharacterized. In this study, two AP2 genes (LITCHI007109 and LITCHI010784) were found to exhibit high and specific expression in carpels. LITCHI007109, designated as LcANT1, is an ortholog of Arabidopsis AINTEGUMENTA (ANT). We next systematically identified the direct downstream target genes of LcANT1, the set of which were significant enriched in biological processes related to floral organ development and carpel morphology. Notably, the carpel development-related gene LITCHI024703 (LcREV) exhibited a high level of co-expression with LcANT1. We found that the LcANT1 protein can directly bind to the promoter region of LcREV. Further evolutionary analysis indicates that the ANT-REV regulatory module is highly conserved in angiosperms, especially in Sapindaceae. Our findings establish a novel theoretical framework for understanding female flower development in lychee and offer critical gene resources and regulatory networks for molecular breeding strategies aimed at developing high-yield, stable cultivars.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf438","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The lychee industry is vital to agricultural economies, boosting farmer livelihoods and regional growth. However, instability of flowering causes yield fluctuations, severely limiting industry sustainability. Stable pistil development in female flowers is essential for yield improvement, yet its molecular regulation remains poorly understood. Although AP2 transcription factors regulate floral organ differentiation and pistil development, their functional role in woody perennials like lychee is uncharacterized. In this study, two AP2 genes (LITCHI007109 and LITCHI010784) were found to exhibit high and specific expression in carpels. LITCHI007109, designated as LcANT1, is an ortholog of Arabidopsis AINTEGUMENTA (ANT). We next systematically identified the direct downstream target genes of LcANT1, the set of which were significant enriched in biological processes related to floral organ development and carpel morphology. Notably, the carpel development-related gene LITCHI024703 (LcREV) exhibited a high level of co-expression with LcANT1. We found that the LcANT1 protein can directly bind to the promoter region of LcREV. Further evolutionary analysis indicates that the ANT-REV regulatory module is highly conserved in angiosperms, especially in Sapindaceae. Our findings establish a novel theoretical framework for understanding female flower development in lychee and offer critical gene resources and regulatory networks for molecular breeding strategies aimed at developing high-yield, stable cultivars.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.