Gabriel Ferreras-Garrucho, Tania Chancellor, Uta Paszkowski
{"title":"Integrating single-cell omic techniques to resolve the spatio-temporal complexity of arbuscular mycorrhizal symbiosis.","authors":"Gabriel Ferreras-Garrucho, Tania Chancellor, Uta Paszkowski","doi":"10.1093/jxb/eraf404","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal symbiosis (AMS) is a ubiquitous and ancient interaction between plant root systems and fungi of the Glomeromycotina subphylum. The resulting relationship is mutually beneficial and deeply intimate where the fungus intracellularly colonises root cortex cells to receive organic carbon and deliver minerals and water to the plant. Fungal colonisation of plant roots and cells is extremely dynamic and asynchronous across the root system. Symbiosis development must therefore result from spatio-temporally fine-tuned molecular control mechanisms of plant and fungus. Although the plant genetic program underpinning AMS has been extensively studied, little is known about its dynamic regulation across root cell layers and developmental stages of the association. Thus, many questions remain outstanding: how do different cell-types transcriptionally respond to AMS, how are distinct cell-type specific regulatory states coordinated, and what are the transcriptional activities in the fungus associated with discrete stages of root colonisation? The advent of single cell-based techniques now enables the high-resolution analysis to address these questions. In this review, we recapitulate the current knowledge on the spatio-temporal control of AMS, we evaluate the relevance of existing spatial datasets to AMS research and provide new perspectives for future study.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf404","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arbuscular mycorrhizal symbiosis (AMS) is a ubiquitous and ancient interaction between plant root systems and fungi of the Glomeromycotina subphylum. The resulting relationship is mutually beneficial and deeply intimate where the fungus intracellularly colonises root cortex cells to receive organic carbon and deliver minerals and water to the plant. Fungal colonisation of plant roots and cells is extremely dynamic and asynchronous across the root system. Symbiosis development must therefore result from spatio-temporally fine-tuned molecular control mechanisms of plant and fungus. Although the plant genetic program underpinning AMS has been extensively studied, little is known about its dynamic regulation across root cell layers and developmental stages of the association. Thus, many questions remain outstanding: how do different cell-types transcriptionally respond to AMS, how are distinct cell-type specific regulatory states coordinated, and what are the transcriptional activities in the fungus associated with discrete stages of root colonisation? The advent of single cell-based techniques now enables the high-resolution analysis to address these questions. In this review, we recapitulate the current knowledge on the spatio-temporal control of AMS, we evaluate the relevance of existing spatial datasets to AMS research and provide new perspectives for future study.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.