加强尿素分配可提高干旱胁迫下大豆的生产性能。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Sandi Win Thu, Mechthild Tegeder
{"title":"加强尿素分配可提高干旱胁迫下大豆的生产性能。","authors":"Sandi Win Thu, Mechthild Tegeder","doi":"10.1093/jxb/eraf099","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean (Glycine max [L.] Merr.) fixes atmospheric nitrogen through a symbiotic relationship with rhizobia in root nodules to produce allantoin and allantoic acid. These ureides serve as primary nitrogen transport compounds moved from nodules to shoot in support of physiological functions and organ growth. Nodule ureide permease 1 (UPS1) is important for this transport process. Drought stress inhibits nitrogen fixation and reduces productivity in soybean, which has been associated with the accumulation of ureides in both nodule and shoot tissues. In this study, it was hypothesized that changes in ureide nodule-to-leaf-to-sink partitioning through manipulation of UPS1 function would alter ureide tissue levels, ultimately influencing soybean responses to drought stress. Soybean plants overexpressing UPS1 (UPS1-OE) were exposed to moderate and severe drought conditions. Changes in organ and phloem ureide levels indicated enhanced nodule-to-shoot ureide transport and increased sink nitrogen supply in the transgenic versus control wild-type plants. We further uncovered improvements in carbon fixation, partitioning and availability for nitrogen fixation, resulting in increased nitrogen gains and better growth of the drought-stressed UPS1-OE lines. Overall, our findings demonstrate that enhanced ureide partitioning not only contributes to improved soybean performance under well-watered conditions, but also under drought stress.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced ureide partitioning improves soybean performance under drought stress.\",\"authors\":\"Sandi Win Thu, Mechthild Tegeder\",\"doi\":\"10.1093/jxb/eraf099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soybean (Glycine max [L.] Merr.) fixes atmospheric nitrogen through a symbiotic relationship with rhizobia in root nodules to produce allantoin and allantoic acid. These ureides serve as primary nitrogen transport compounds moved from nodules to shoot in support of physiological functions and organ growth. Nodule ureide permease 1 (UPS1) is important for this transport process. Drought stress inhibits nitrogen fixation and reduces productivity in soybean, which has been associated with the accumulation of ureides in both nodule and shoot tissues. In this study, it was hypothesized that changes in ureide nodule-to-leaf-to-sink partitioning through manipulation of UPS1 function would alter ureide tissue levels, ultimately influencing soybean responses to drought stress. Soybean plants overexpressing UPS1 (UPS1-OE) were exposed to moderate and severe drought conditions. Changes in organ and phloem ureide levels indicated enhanced nodule-to-shoot ureide transport and increased sink nitrogen supply in the transgenic versus control wild-type plants. We further uncovered improvements in carbon fixation, partitioning and availability for nitrogen fixation, resulting in increased nitrogen gains and better growth of the drought-stressed UPS1-OE lines. Overall, our findings demonstrate that enhanced ureide partitioning not only contributes to improved soybean performance under well-watered conditions, but also under drought stress.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf099\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf099","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大豆(甘氨酸max) [L];[Merr.])通过与根瘤中的根瘤菌的共生关系来固定大气中的氮,从而产生尿囊素和尿囊酸。这些氮化物作为主要的氮转运化合物从根瘤转移到茎,支持生理功能和器官生长。结核脲渗透酶1 (UPS1)在这一运输过程中起重要作用。干旱胁迫抑制了大豆的固氮作用,降低了产量,这与根瘤和茎部组织中尿素的积累有关。在本研究中,我们假设通过操纵UPS1功能改变尿素素从结节到叶片到库的分配会改变尿素素组织水平,最终影响大豆对干旱胁迫的反应。过表达UPS1 (UPS1- oe)的大豆植株暴露在中重度干旱条件下。器官和韧皮部脲素水平的变化表明,与对照野生型相比,转基因植物的根瘤部到茎部的脲素运输增强,库氮供应增加。我们进一步发现,干旱胁迫下UPS1-OE品系在固碳、分配和固氮有效性方面的改善,导致氮素收益增加,生长更好。总的来说,我们的研究结果表明,增强尿素分配不仅有助于在水分充足的条件下提高大豆的生产性能,而且也有助于在干旱胁迫下提高大豆的生产性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced ureide partitioning improves soybean performance under drought stress.

Soybean (Glycine max [L.] Merr.) fixes atmospheric nitrogen through a symbiotic relationship with rhizobia in root nodules to produce allantoin and allantoic acid. These ureides serve as primary nitrogen transport compounds moved from nodules to shoot in support of physiological functions and organ growth. Nodule ureide permease 1 (UPS1) is important for this transport process. Drought stress inhibits nitrogen fixation and reduces productivity in soybean, which has been associated with the accumulation of ureides in both nodule and shoot tissues. In this study, it was hypothesized that changes in ureide nodule-to-leaf-to-sink partitioning through manipulation of UPS1 function would alter ureide tissue levels, ultimately influencing soybean responses to drought stress. Soybean plants overexpressing UPS1 (UPS1-OE) were exposed to moderate and severe drought conditions. Changes in organ and phloem ureide levels indicated enhanced nodule-to-shoot ureide transport and increased sink nitrogen supply in the transgenic versus control wild-type plants. We further uncovered improvements in carbon fixation, partitioning and availability for nitrogen fixation, resulting in increased nitrogen gains and better growth of the drought-stressed UPS1-OE lines. Overall, our findings demonstrate that enhanced ureide partitioning not only contributes to improved soybean performance under well-watered conditions, but also under drought stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信