Marwa M Alnsour, Rasha A Alamoush, Nikolaos Silikas, Julian D Satterthwaite
{"title":"The Effect of Erosive Media on the Mechanical Properties of CAD/CAM Composite Materials.","authors":"Marwa M Alnsour, Rasha A Alamoush, Nikolaos Silikas, Julian D Satterthwaite","doi":"10.3390/jfb15100292","DOIUrl":"https://doi.org/10.3390/jfb15100292","url":null,"abstract":"<p><p>This study aimed to investigate the effect of acidic media storage (gastric acid and Coca-Cola) on the mechanical properties of CAD/CAM materials. Three types of materials were tested: a polymer-infiltrated ceramic network (PICN) (Vita Enamic (En), VITA Zahnfabrik, Germany), a resin composite block (RCB) (Cerasmart (Cs), GC Corp, Japan), and a conventional resin-based composite (Gradia direct (Gr), GC Corp, Japan), which was used as a control. Beam-shaped specimens of each material, with dimensions of 16 mm × 4 mm × 1.5 mm, were prepared (90 in total). The specimens were divided into subgroups (10 each) and stored for 96 h in either gastric acid, Coca-Cola, or distilled water. Flexural strength and elastic modulus were evaluated using a three-point flexural strength test with acoustic emission (AE) monitoring. Vickers microhardness was measured before and after storage in gastric acid and Coca-Cola. Data were statistically analysed using two-way and one-way ANOVA, the Tukey's post hoc, and independent <i>t</i>-test at a significance level of 0.05. The results showed that Cs and En maintained their flexural strength and elastic modulus after acidic media exposure, while Gr experienced a significant decrease in flexural strength following gastric acid storage (<i>p</i> < 0.01). Initial crack detection was not possible using the AE system, impacting the determination of flexural strength. Exposure to acidic media decreased all materials' microhardness, with Gr showing the most notable reduction (<i>p</i> < 0.0001). Gastric acid had a greater impact on the microhardness of all tested materials compared to Coca-Cola (<i>p</i> < 0.0001). In conclusion, storage in erosive media did not notably affect the flexural strength or elastic modulus of CAD/CAM composites but it did affect hardness. CAD/CAM composite blocks demonstrated superior mechanical properties compared to the conventional composite.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Peng, Zehang Lu, Enyang Liu, Wenteng Wu, Sirong Yu, Jie Sun
{"title":"Preparation, Mechanical Properties, and Degradation Behavior of Zn-1Fe-<i>x</i>Sr Alloys for Biomedical Applications.","authors":"Wen Peng, Zehang Lu, Enyang Liu, Wenteng Wu, Sirong Yu, Jie Sun","doi":"10.3390/jfb15100289","DOIUrl":"https://doi.org/10.3390/jfb15100289","url":null,"abstract":"<p><p>As biodegradable materials, zinc (Zn) and zinc-based alloys have attracted wide attention owing to their great potential in biomedical applications. However, the poor strength of pure Zn and binary Zn alloys limits their wide application. In this work, a stir casting method was used to prepare the Zn-1Fe-<i>x</i>Sr (<i>x</i> = 0.5, 1, 1.5, 2 wt.%) ternary alloys, and the phase composition, microstructure, tensile properties, hardness, and degradation behavior were studied. The results indicated that the SrZn<sub>13</sub> phase was generated in the Zn matrix when the Sr element was added, and the grain size of Zn-1Fe-<i>x</i>Sr alloy decreased with the increase in Sr content. The ultimate tensile strength (UTS) and Brinell hardness increased with the increase in Sr content. The UTS and hardness of Zn-1Fe-2Sr alloy were 141.65 MPa and 87.69 HBW, which were 55.7% and 58.4% higher than those of Zn-1Fe alloy, respectively. As the Sr content increased, the corrosion current density of Zn-1Fe-<i>x</i>Sr alloy increased, and the charge transfer resistance decreased significantly. Zn-1Fe-2Sr alloy had a degradation rate of 0.157 mg·cm<sup>-2</sup>·d<sup>-1</sup>, which was 118.1% higher than the degradation rate of Zn-1Fe alloy. Moreover, the degradation rate of Zn-1Fe-<i>x</i>Sr alloy decreased significantly with the increase in immersion time.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review.","authors":"Saharat Jongrungsomran, Dakrong Pissuwan, Apichai Yavirach, Chaiy Rungsiyakull, Pimduen Rungsiyakull","doi":"10.3390/jfb15100291","DOIUrl":"https://doi.org/10.3390/jfb15100291","url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, including titanium, polymethylmethacrylate (PMMA) and resin composites. This review aims to summarize the advancements in the application of modified AuNPs in dental materials and to assess their effects on related cellular processes in the dental field. Relevant articles published in English on AuNPs in association with dental materials were identified through a systematic search of the PubMed/MEDLINE, Embase, Scopus and ScienceDirect databases from January 2014 to April 2024. Future prospects for the utilization of AuNPs in the field of dentistry are surveyed.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felipe Immich, Durvalino de Oliveira, Juliana Silva Ribeiro de Andrade, Andressa da Silva Barboza, Carlos Enrique Cuevas-Suárez, Adriana Fernandes da Silva, Wellington Luiz de Oliveira da Rosa, Álvaro Henrique Borges, Neftali Lenin Villarreal Carreno, Evandro Piva, Rafael Guerra Lund
{"title":"Correction: Immich et al. Evaluation of Antimicrobial Properties, Cell Viability, and Metalloproteinase Activity of Bioceramic Endodontic Materials Used in Vital Pulp Therapy. <i>J. Funct. Biomater.</i> 2024, <i>15</i>, 70.","authors":"Felipe Immich, Durvalino de Oliveira, Juliana Silva Ribeiro de Andrade, Andressa da Silva Barboza, Carlos Enrique Cuevas-Suárez, Adriana Fernandes da Silva, Wellington Luiz de Oliveira da Rosa, Álvaro Henrique Borges, Neftali Lenin Villarreal Carreno, Evandro Piva, Rafael Guerra Lund","doi":"10.3390/jfb15100290","DOIUrl":"https://doi.org/10.3390/jfb15100290","url":null,"abstract":"<p><p><b>Error in Figure 3</b> [...].</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of the Peri-Implant Tissues of Patients with Severe Bone Atrophy Treated with a New Short and Extra-Short Implant System-A Pilot Study.","authors":"Kely Cristina de Moraes, Geninho Thomé, Flávia Noemy Gasparini Kiatake Fontão, Carolina Accorsi Cartelli, Rosemary Adriana Chierici Marcantonio, Carolina Mendonça de Almeida Malzoni, Elcio Marcantonio Junior","doi":"10.3390/jfb15100288","DOIUrl":"https://doi.org/10.3390/jfb15100288","url":null,"abstract":"<p><p>This study aimed to assess clinical and radiographic outcomes, including implant survival, marginal bone loss, and patient satisfaction, in individuals with severe bone atrophy treated using a newly developed system of short and extra-short implants. A total of 44 implants (37 short and 7 extra-short) were placed with immediate loading in 11 patients. The patients were followed up at between 6 and 24 months. Bone changes, keratinized mucosa, bleeding on probing, probing depth, crown-to-implant ratio, and patient satisfaction were evaluated. An implant survival and success rate of 100% was observed. The peri-implant bone condition showed no significant associations between marginal bone loss (MBL) and gingival recession. In extra-short implants, the crown-to-implant ratio did not affect MBL in the evaluated times. However, short implants showed a statistically significant inverse correlation between mesial measurement and crown-to-implant ratio (<i>p</i> = 0.006) and between distal measurement and crown-to-implant ratio (<i>p</i> = 0.004) over six months. Plaque was present in the mesiobuccal regions in 38.64% of the implants, with extra-short implants having the highest relative frequency (71.4%). Bleeding was observed in 18.9% of the short implants in the mesiolingual region and 14.3% of the extra-short implants. There was a statistically significant association between bleeding on probing in the mesiobuccal region and the type of implant (<i>p</i> = 0.026). The analysis of probing depth showed no difference between the types of implants. Within the limits of this study, short and extra-short implants presented similar clinical and radiographic behavior of soft and hard tissues in the evaluated times.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System.","authors":"Hossein Abdollahi, Saber Amiri, Farzaneh Amiri, Somayeh Moradi, Payam Zarrintaj","doi":"10.3390/jfb15100286","DOIUrl":"https://doi.org/10.3390/jfb15100286","url":null,"abstract":"<p><p>Designing a wound dressing with controlled uptake, antibacterial, and proper biocompatibility is crucial for the appropriate wound healing process. In this study, alginate/tetracycline (Alg/TC) beads were produced and embedded into chitosan/pluronic/agarose semi-interpenetrating polymer network hydrogel, which serves as a potential biocompatible dressing for treating skin wounds. The effect of pluronic content on the porosity, swelling, mechanical characteristics, and degradation of the hydrogel was investigated. Furthermore, the impact of Alg beads on TC release was subsequently examined. In the absence of Alg beads, faster release was observed. However, after incorporating beads into the hydrogels, the release was sustained. Particularly, the hydrogel containing Alg beads exhibited a nearly linear release, reaching 74% after 2 days in acidic media. The antimicrobial activity and biocompatibility of the hydrogel were also evaluated to assess the capability of the TC-loaded hydrogels for wound dressing applications. The hydrogel demonstrated efficient antibacterial features against Gram-positive and Gram-negative bacteria. Additionally, the sample behavior was evaluated against exposure to yeast. Furthermore, based on biocompatibility studies using HFF2 cells, the TC-loaded hydrogel exhibited remarkable biocompatibility. Overall, this novel composite hydrogel shows remarkable biocompatibility and antibacterial activities which can be used as a great potential wound dressing to prevent wound infections due to its effective inhibition of bacterial growth.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Andze, Vadims Nefjodovs, Martins Andzs, Marite Skute, Juris Zoldners, Martins Kapickis, Arita Dubnika, Janis Locs, Janis Vetra
{"title":"Chemically Pretreated Densification of Juniper Wood for Potential Use in Osteosynthesis Bone Implants.","authors":"Laura Andze, Vadims Nefjodovs, Martins Andzs, Marite Skute, Juris Zoldners, Martins Kapickis, Arita Dubnika, Janis Locs, Janis Vetra","doi":"10.3390/jfb15100287","DOIUrl":"https://doi.org/10.3390/jfb15100287","url":null,"abstract":"<p><p>The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of wood sample was obtained by Kraft cooking. The second step was extraction with ethanol, ethanol-water mixture, saline, and water to prevent the release of soluble compounds and increase biocompatibility. In the last step, the thermal densification at 100 °C for 24 h was implemented. The results obtained in the dry state are equivalent to the properties of bone. The swelling of chemically pre-treated densified wood was reduced compared to chemically untreated densified wood. Samples showed no cytotoxicity by in vitro cell assays. The results of the study showed that it is possible to obtain noncytotoxic wood samples with mechanical properties equivalent to bones by partial delignification, extraction, and densification. However, further research is needed to ensure the material's shape stability, water resistance, and reduced swelling.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Moreau, Debarghya China, Gnagna Sy, Kai Ding, Wilfred Ngwa
{"title":"Customizable Lyophilized Agent for Radiotherapy Imaging and TherapY (CLARITY).","authors":"Michele Moreau, Debarghya China, Gnagna Sy, Kai Ding, Wilfred Ngwa","doi":"10.3390/jfb15100285","DOIUrl":"https://doi.org/10.3390/jfb15100285","url":null,"abstract":"<p><p>Smart radiotherapy biomaterials (SRBs) include seed and liquid biomaterials designed to be employed as fiducial markers during radiotherapy while also delivering therapeutic drug payloads to enhance treatment outcomes. In this study, we investigate a novel Customizable Lyophilized Agent for Radiotherapy Imaging and TherapY (CLARITY) biomaterial, which can be loaded with immunoadjuvants (anti-CD40 monoclonal antibody or Caflanone (FBL-03G)) at the point of care. The CLARITY biomaterial was investigated in an animal model of pancreatic cancer using C57BL6 mice. Mice were imaged before and at different points of time post-treatment to evaluate the potential of CLARITY biomaterial to provide imaging contrast similar to fiducials. This study also used cadavers to assess CLARITY's potential to provide imaging contrast in humans. Results showed imaging contrast from computed tomography (CT) and magnetic resonance imaging (MRI) modalities for up to 30 days post-treatment, demonstrating potential for use as fiducials. A significant increase in survival (<i>***</i>, <i>p</i> = 0.0006) was observed for mice treated with CLARITY biomaterial loaded with immunoadjuvant for up to 10 weeks post-treatment compared to those without treatment. These initial results demonstrate the potential of CLARITY biomaterial to serve as a smart multifunctional radiotherapy biomaterial and provide the impetus for further development and optimization as a point-of-care technology for combination radiotherapy and immunotherapy.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nouf N Mahmoud, Ayat S Hammad, Alaya S Al Kaabi, Hend H Alawi, Summaiya Khatoon, Maha Al-Asmakh
{"title":"Evaluating the Effects of BSA-Coated Gold Nanorods on Cell Migration Potential and Inflammatory Mediators in Human Dermal Fibroblasts.","authors":"Nouf N Mahmoud, Ayat S Hammad, Alaya S Al Kaabi, Hend H Alawi, Summaiya Khatoon, Maha Al-Asmakh","doi":"10.3390/jfb15100284","DOIUrl":"https://doi.org/10.3390/jfb15100284","url":null,"abstract":"<p><p>Albumin-coated gold nanoparticles display potential biomedical applications, including cancer research, infection treatment, and wound healing; however, elucidating their interaction with normal cells remains an area with limited exploration. In this study, gold nanorods (GNR) were prepared and coated with bovine serum albumin (BSA) to produce GNR-BSA. The functionalized nanoparticles were characterized based on their optical absorption spectra, morphology, surface charge, and quantity of attached protein. The interaction between GNR-BSA and BSA with normal cells was investigated using human dermal fibroblasts. The cytotoxicity test indicated cell viability between ~63-95% for GNR-BSA over concentrations from 30.0 to 0.47 μg/mL and ~85-98% for BSA over concentrations from 4.0 to 0.0625 mg/mL. The impact of the GNR-BSA and BSA on cell migration potential and wound healing was assessed using scratch assay, and the modulation of cytokine release was explored by quantifying a panel of cytokines using Multiplex technology. The results indicated that GNR-BSA, at 10 μg/mL, delayed the cell migration and wound healing 24 h post-treatment compared to the BSA or the control group with an average wound closure percentage of 6% and 16% at 6 and 24 h post-treatment, respectively. Multiplex analysis revealed that while GNR-BSA reduced the release of the pro-inflammatory marker IL-12 from the activated fibroblasts 24 h post-treatment, they significantly reduced the release of IL-8 (<i>p</i> < 0.001), and CCL2 (<i>p</i> < 0.01), which are crucial for the inflammation response, cell adhesion, proliferation, migration, and angiogenesis. Although GNR-BSA exhibited relatively high cell viability towards human dermal fibroblasts and promising therapeutic applications, toxicity aspects related to cell motility and migration must be considered.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Carolina Lanzino, Long-Quan R V Le, Anika Höppel, Andreas Killinger, Wolfgang Rheinheimer, Sofia Dembski, Ali Al-Ahmad, Hermann O Mayr, Michael Seidenstuecker
{"title":"Suspension-Sprayed Calcium Phosphate Coatings with Antibacterial Properties.","authors":"Maria Carolina Lanzino, Long-Quan R V Le, Anika Höppel, Andreas Killinger, Wolfgang Rheinheimer, Sofia Dembski, Ali Al-Ahmad, Hermann O Mayr, Michael Seidenstuecker","doi":"10.3390/jfb15100281","DOIUrl":"https://doi.org/10.3390/jfb15100281","url":null,"abstract":"<p><p>Prosthesis loosening due to lack of osteointegration between an implant and surrounding bone tissue is one of the most common causes of implant failure. Further, bacterial contamination and biofilm formation onto implants represent a serious complication after surgery. The enhancement of osteointegration can be achieved by using bioconductive materials that promote biological responses in the body, stimulating bone growth and thus bonding to tissue. Through the incorporation of antibacterial substances in bioconductive, biodegradable calcium phosphate (CaP) coatings, faster osteointegration and bactericidal properties can be achieved. In this study, Cu-doped CaP supraparticles are spray-dried and suspension-sprayed CaP ceramic coatings with antibacterial properties are prepared using high-velocity suspension flame spraying (HVSFS). The objective was to increase the coatings' porosity and investigate which Cu-doped supraparticles have the strongest antibacterial properties when introduced into the coating layers. Biocompatibility was tested on human Osteosarcoma cells MG63. A porosity of at least 13% was achieved and the supraparticles could be implemented, enhancing it up to 16%. The results showed that the addition of Cu-doped supraparticles did not significantly reduce the number of viable cells compared to the Cu-free sample, demonstrating good biocompatibility. The antimicrobial activity was assessed against the bacterial strains <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, with Safe Airborne Antibacterial testing showing a significant reduction in both Gram-positive and Gram-negative strains on the Cu-doped coatings.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}