Caddisfly Silk-Polycaprolactone Foams: Physicochemical and Biological Properties of Nature-Inspired Biomaterials.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Mateusz M Urbaniak, Mariusz Tszydel, Konrad Szustakiewicz, Aleksandra Szwed-Georgiou, Bartłomiej Kryszak, Marcin Włodarczyk, Sylwia Michlewska, Piotr Jóźwiak, Tomislav Ivankovic, Mikołaj K Cybulski, Karolina Rudnicka
{"title":"Caddisfly Silk-Polycaprolactone Foams: Physicochemical and Biological Properties of Nature-Inspired Biomaterials.","authors":"Mateusz M Urbaniak, Mariusz Tszydel, Konrad Szustakiewicz, Aleksandra Szwed-Georgiou, Bartłomiej Kryszak, Marcin Włodarczyk, Sylwia Michlewska, Piotr Jóźwiak, Tomislav Ivankovic, Mikołaj K Cybulski, Karolina Rudnicka","doi":"10.3390/jfb16060199","DOIUrl":null,"url":null,"abstract":"<p><p>The unique properties of insect silk have attracted attention for years to develop scaffolds for tissue engineering. Combining natural silks with synthetic polymers may benefit biocompatibility, mechanical strength, and elasticity. Silk-modified biomaterials are a promising choice for tissue engineering due to their versatility, biocompatibility, and many processing methods. This study investigated the physicochemical and biological properties of biocomposites formed by combining caddisfly silk (<i>Hydropsyche angustipennis</i>) and polycaprolactone (PCL). The PCL foams modified with caddisfly silk demonstrated full cytocompatibility and enhanced fibroblast adhesion and proliferation compared to unmodified PCL. These silk-modified PCL foams also induced NF-κB signaling, which is crucial for initiating tissue regeneration. Notably, the antimicrobial properties of the silk-modified PCL foams remained consistent with those of unmodified PCL, suggesting that the addition of silk did not alter this aspect of performance. The findings suggest that caddisfly silk-modified PCL foams present a promising solution for future medical and dental applications, emphasizing the potential of alternative silk sources in tissue engineering.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16060199","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The unique properties of insect silk have attracted attention for years to develop scaffolds for tissue engineering. Combining natural silks with synthetic polymers may benefit biocompatibility, mechanical strength, and elasticity. Silk-modified biomaterials are a promising choice for tissue engineering due to their versatility, biocompatibility, and many processing methods. This study investigated the physicochemical and biological properties of biocomposites formed by combining caddisfly silk (Hydropsyche angustipennis) and polycaprolactone (PCL). The PCL foams modified with caddisfly silk demonstrated full cytocompatibility and enhanced fibroblast adhesion and proliferation compared to unmodified PCL. These silk-modified PCL foams also induced NF-κB signaling, which is crucial for initiating tissue regeneration. Notably, the antimicrobial properties of the silk-modified PCL foams remained consistent with those of unmodified PCL, suggesting that the addition of silk did not alter this aspect of performance. The findings suggest that caddisfly silk-modified PCL foams present a promising solution for future medical and dental applications, emphasizing the potential of alternative silk sources in tissue engineering.

Caddisfly蚕丝-聚己内酯泡沫:自然启发生物材料的物理化学和生物学特性。
近年来,昆虫丝的独特性能引起了组织工程支架的研究。将天然丝与合成聚合物结合可能有利于生物相容性、机械强度和弹性。蚕丝改性生物材料因其多功能性、生物相容性和多种加工方法而成为组织工程中一个很有前途的选择。本文研究了以水蝇丝(Hydropsyche angustipennis)和聚己内酯(PCL)为原料制备的生物复合材料的物理化学和生物学性能。与未修饰的PCL相比,用caddisfly丝修饰的PCL泡沫具有完全的细胞相容性,增强了成纤维细胞的粘附和增殖。这些丝修饰的PCL泡沫还能诱导NF-κB信号传导,这对于启动组织再生至关重要。值得注意的是,丝绸改性的PCL泡沫的抗菌性能与未改性的PCL保持一致,这表明添加丝绸并没有改变这方面的性能。研究结果表明,caddisfly蚕丝改性PCL泡沫为未来的医疗和牙科应用提供了一个有希望的解决方案,强调了组织工程中替代蚕丝来源的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信