{"title":"Hydrogel doped with sinomenine-CeO<sub>2</sub> nanoparticles for sustained intra-articular therapy in knee osteoarthritis.","authors":"Chuanyi Sheng, Baorong Zhu, Xiaomei Lin, Hongyuan Shen, Zhonghua Wu, Jinjun Shi, Liang Ge","doi":"10.1080/1061186X.2024.2449488","DOIUrl":"10.1080/1061186X.2024.2449488","url":null,"abstract":"<p><p>In this study, we developed an intra-articular injectable hydrogel drug depot (SMN-CeO<sub>2</sub>@G) for sustained OA treatment. This hydrogel system, which carries sinomenine-loaded cerium dioxide nanoparticles (SMN-CeO<sub>2</sub>), enhances anti-inflammatory and anti-apoptotic effects within the joint cavity. SMN-CeO<sub>2</sub>@G features a three-dimensional network structure with an approximate pore size of 10 μm, stably encapsulating SMN-CeO<sub>2</sub> nanoparticles (∼75 nm). Under hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) exposure and simulated mechanical stress, SMN-CeO<sub>2</sub>@G achieves a cumulative SMN release of 44.72 ± 7.83% over 48 hours, demonstrating controlled release capabilities. At an SMN concentration of 0.5 μg/mL, SMN-CeO<sub>2</sub>@G significantly enhances proliferation, reduces apoptosis, and lowers matrix metalloproteinases-13 (MMP-13) secretion in IL-1β-induced ATDC5 chondrocytes. In the ATDC5-RAW264.7 co-culture model, SMN-CeO<sub>2</sub>@G effectively reduces reactive oxygen species (ROS) levels, apoptosis (∼20%), and MMP13 concentrations (24.3 ± 3.1 ng/mL) in chondrocytes, likely due to the promotion of macrophages M2 polarisation. In anti-OA efficacy studies, a single intra-articular injection of SMN-CeO<sub>2</sub>@G significantly reduces osteophyte formation, promotes subchondral bone normalisation, alleviates pain sensitivity, and lowers serum IL-1β (59.3 ± 2.4 pg/mL) and MMP-13 (23.6 ± 1.7 ng/mL) levels in OA model rats. SMN-CeO<sub>2</sub>@G also achieves prolonged retention in the synovial fluid, with 6.7 ± 2.8% SMN still detectable at 72 hours post-injection, a factor crucial for sustained therapeutic effect. Overall, SMN-CeO<sub>2</sub>@G presents a promising tool for intra-articular OA treatment.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"804-816"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-06-01Epub Date: 2025-01-06DOI: 10.1080/1061186X.2024.2447793
Syeda Nashvia Adin, Isha Gupta, Mohd Aqil, Mohd Mujeeb, Abul Kalam Najmi
{"title":"Nanotransethosomal dual-drug loaded gel of methotrexate and mangiferin as a potent synergistic intervention for rheumatoid arthritis via transdermal delivery.","authors":"Syeda Nashvia Adin, Isha Gupta, Mohd Aqil, Mohd Mujeeb, Abul Kalam Najmi","doi":"10.1080/1061186X.2024.2447793","DOIUrl":"10.1080/1061186X.2024.2447793","url":null,"abstract":"<p><p>The goal of this study is to assess the potential advantages of utilising methotrexate (MTH), and mangiferin (MFR), in nanoparticulate configuration which is transethosomes (TRS), which could result in increased stability and solubility, as well as improved infiltration into the arthritic tissues under investigation. The synthesised MTH-MFR-TRS demonstrated a particle size of 151.7 nm and a PDI of 0.1199. Additionally, the zeta potential was observed to be favourable at -30.43 mV. Supplementary evaluations were performed, comprising transmission electron microscopy (TEM), confocal microscopy and skin permeation analysis. The CLSM study revealed that the MTH-MFR-TRS gel formulation demonstrated enhanced permeation of MTH and MFR through the skin layers in comparison with MTH-MFR suspension gel. The results of the <i>in vivo</i> investigation indicate that the MTH-MFR-TRS gel displays favourable anti-arthritic characteristics compared to the diclofenac standard gel. The aforementioned phenomenon was evidenced by means of histopathological investigations and radiographic scrutiny. The study at hand has validated the utility of TRS vesicles as a carrier for the transdermal administration of MTH and MFR, thereby offering a promising therapeutic approach for the management of rheumatoid arthritis.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"773-792"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction.","authors":"","doi":"10.1080/1061186X.2025.2513758","DOIUrl":"https://doi.org/10.1080/1061186X.2025.2513758","url":null,"abstract":"","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1"},"PeriodicalIF":4.3,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144181600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction statement.","authors":"","doi":"10.1080/1061186X.2025.2508577","DOIUrl":"https://doi.org/10.1080/1061186X.2025.2508577","url":null,"abstract":"","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1"},"PeriodicalIF":4.3,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144174111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheng-Xin Yao, Yu-Jing Huang, Yue-Xi Zhang, Ze-Xi Cui, Hai-Yue Lu, Ru Wang, Lei Shi
{"title":"Revisiting VEGF/VEGFR-2 signalling as an anticancer target and its inhibitor discovery: where are we and where should we go?","authors":"Sheng-Xin Yao, Yu-Jing Huang, Yue-Xi Zhang, Ze-Xi Cui, Hai-Yue Lu, Ru Wang, Lei Shi","doi":"10.1080/1061186X.2025.2508985","DOIUrl":"10.1080/1061186X.2025.2508985","url":null,"abstract":"<p><p>Angiogenesis plays an important role in tumour growth and metastasis. Targeting tumour vascular endothelial cells to inhibit tumour angiogenesis and thus block tumour blood and nutrition supply is the current research focus on anti-tumour growth and metastasis. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR-2) signal pathway regulates the proliferation, migration, survival and angiogenesis of vascular endothelial cells, which is abnormally activated in different tumours. Studies have confirmed that inhibiting VEGF/VEGFR-2 signalling pathway can produce anti-tumour effect. Nowadays, anti-angiogenesis therapy targeting VEGF/VEGFR-2 inhibition has become the most effective clinical strategy for cancer treatment. Therefore, a variety of VEGF/VEGFR-2 inhibitors with different structures have been developed. A few selectively inhibit VEGF to block the activation of VEGFR-2 pathway, while the majority selectively inhibit VEGFR-2 as multi-target inhibitors. Based on the classification of dominant skeletons, this paper briefly analyzes the biological activity, clinical research process and structure-activity relationship of the representative small molecule inhibitors of VEGF/VEGFR-2.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-24"},"PeriodicalIF":4.3,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144093933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Negar Ebadpour, Mohammad Abavisani, Amirhossein Sahebkar
{"title":"Microbiome-driven precision medicine: advancing drug development with pharmacomicrobiomics.","authors":"Negar Ebadpour, Mohammad Abavisani, Amirhossein Sahebkar","doi":"10.1080/1061186X.2025.2509283","DOIUrl":"10.1080/1061186X.2025.2509283","url":null,"abstract":"<p><p>Pharmacomicrobiomics investigates the complicated relationship between the gut microbiome and medications. Microbial communities can influence the metabolism and efficacy of many medications in two primary ways: directly and indirectly. Direct mechanisms typically entail the induction of biochemical alterations and multiple transformations directly on the drug, whereas indirect mechanisms encompass modifications in host metabolism, alterations in the gut microbial community, the synthesis of various metabolites, and interactions with the host immune system, which indirectly influence the drug's metabolism, absorption, and efficacy. For instance, microbial communities play an important part in activating prodrugs like sulfasalazine, improving the outcomes of immunotherapy, and minimising toxicity through specific interventions. Nonetheless, barriers can also emerge from the microbial breakdown of medications, reducing their therapeutic efficacy, along with adverse reactions mediated by microbiota. Innovations like probiotics, faecal microbiota transplantation, and microbiota profiling have shown promise in enhancing these interactions. Utilising the distinct microbiota composition of individuals, pharmacomicrobiomics offers a route to personalised, precise, and safer therapies, signalling an important evolution in drug development and clinical practice. This study aims to provide a comprehensive overview of microbiome-drug interactions.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-16"},"PeriodicalIF":4.3,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144101905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the osteogenic potential of bone-targeted daidzein loaded hydroxyapatite nanoparticles for postmenopausal osteoporosis: pharmacodynamic, biochemical, and genotoxicity evaluations.","authors":"Namrata Gautam, Prashant Sharma, Antra Chaudhary, Surajita Sahu, Divya Vohora, Monalisa Mishra, Debopriya Dutta, Manish Singh, Sushama Talegaonkar","doi":"10.1080/1061186X.2025.2503499","DOIUrl":"10.1080/1061186X.2025.2503499","url":null,"abstract":"<p><p>Bisphosphonates and Hormone Replacement Therapy are the primary therapeutic interventions for Postmenopausal Osteoporosis (PMO), however, associated repercussions limit their usage. To address this challenge, we hypothesised the co-delivery of hydroxyapatite (HAP) with daidzein (DZ) for synergistic treatment of PMO. Propounding this bimodal approach, daidzein-loaded hydroxyapatite nanoparticles (DZHAPNPs) were prepared leveraging the oestrogenic properties of DZ while utilising HAP to facilitate biomineralization. The osteogenic potential of developed nanoparticles was validated through <i>in vitro</i> experiments on MG-63 cells and <i>in vivo</i> studies employing a \"4-vinyl cyclohexene diepoxide-induced menopausal-mice model\". DZHAPNPs exhibited pronounced pro-osteogenic activity, evidenced by enhanced (155.49%) alkaline phosphatase (ALP) activity in MG-63 cells. Additionally, cellular uptake studies confirmed their internalisation and targeted delivery. Following menopause induction and treatment, the mice underwent radiography, histology, micro-computed tomography (micro-CT) analysis, and biochemical evaluations. A significant reduction (<i>p</i> < 0.001) in biomarkers i.e., β-CTx, BALP, and TRAP-5b, post-treatment showed a substantial influence of DZ and DZHAPNPs. Better bone architectural parameters and bone mineral density in micro-CT analysis served as proof of the hypothesis. Also, the cellular biocompatibility of nanoparticles was confirmed through genotoxicity tests performed on the <i>Drosophila melanogaster</i>. The noteworthy results of the research substantiated the synergistic influence of DZ and HAPNPs in resilience and bone strength maintenance.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-16"},"PeriodicalIF":4.3,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144022518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevser Bal, Sibel Küçükertuğrul Çelik, Sema Şentürk, Özlem Kaplan, Emine Büşra Eker, Mehmet Koray Gök
{"title":"Recent progress in chitosan-based nanoparticles for drug delivery: a review on modifications and therapeutic potential.","authors":"Kevser Bal, Sibel Küçükertuğrul Çelik, Sema Şentürk, Özlem Kaplan, Emine Büşra Eker, Mehmet Koray Gök","doi":"10.1080/1061186X.2025.2502956","DOIUrl":"10.1080/1061186X.2025.2502956","url":null,"abstract":"<p><p>Chitosan, obtained from chitin by deacetylation, is a versatile biopolymer known for its biocompatibility, biodegradability and environmental friendliness. Combined with its chemical and physical modifiability, these properties have made chitosan an important material in biomedical and pharmaceutical fields, especially in drug delivery systems. Chitosan-based nanomaterials exhibit enhanced functions through various chemical modifications such as thiolation, acetylation, carboxylation and phosphorylation, as well as through physical and enzymatic approaches. These modifications address inherent limitations such as poor solubility, limited acid resistance and insufficient mechanical strength, expanding the applications of chitosan in tissue engineering, gene therapy, vaccine delivery, wound healing and bioimaging. This review provides an in-depth analysis of the chemical structure, physicochemical properties and modification strategies of chitosan. It also explores current methodologies for preparing chitosan nanoparticles, along with drug loading and release techniques. Various targeting strategies employed in chitosan-based delivery systems are examined in detail. To illustrate the clinical relevance of these approaches, representative examples from recent therapeutic studies are included. Moreover, it highlights future research directions and the innovation potential of chitosan-based materials.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-28"},"PeriodicalIF":4.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Breast cancer cell targeting of L-leucine-PLGA conjugated hybrid solid lipid nanoparticles of betulin via L-amino acid transport system-1.","authors":"Shilpa Amit Gajbhiye, Moreshwar P Patil","doi":"10.1080/1061186X.2025.2500036","DOIUrl":"10.1080/1061186X.2025.2500036","url":null,"abstract":"<p><p>The aim of fabricating hybrid solid lipid nanoparticles (HSLN) was to enhance the delivery of betulin to triple negative breast cancer cells through the intravenous route <i>via</i> L-amino transporter system-1, using L-leucine-PLGA conjugate (Conj-HSLN) by hot high pressure homogenisation method. Betulin (BN), having potent anticancer and antioxidant activity, faces challenges due to poor water solubility and permeability, affecting its bioavailability. The results revealed Conj-HSLN with particle size 318.3 ± 0.25 nm. The percent cumulative BN release from Conj-HSLN was 57.763%, 24h. The cytotoxicity study in MB-MDA-231 cell depicts, LD<sub>50</sub> 67.73 µg/ml in Conj-HSLN. Pharmacokinetics study reveals enhanced C<sub>max</sub> and half-life in Conj-HSLN (32.12 ± 0.25 µg/ml, 4.72 ± 0.53 h) than raw BN (1.31 ± 0.21 µg/ml, 7.54 ± 0.34 h). Enhanced distribution at tumour site (11.5967% ID, 2h) in Conj-HSLN signifies the role of L-leucine in the transport system. Pharmacodynamic study shows mean tumour volume of 765.3 ± 85.884, and 1450.01 ± 219.361 mm<sup>3</sup> in Conj-HSLN, and BN, respectively, at 3<sup>rd</sup> week of treatment. Standardised uptake value attributed reduced glucose uptake, due to inhibited tumour growth and proliferation, confirmed by tumour biomarkers assay, VEGF and Caspase-9. In conclusion, the targeted controlled release L-leucine conjugated-BN loaded HSLN is stable, safe, and effective against triple negative breast cancers.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-30"},"PeriodicalIF":4.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143995679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hedgehog signalling pathway inhibitors in the treatment of basal cell carcinoma: an updated review.","authors":"Adela Markota Cagalj, Mislav Glibo, Valentina Karin-Kujundzic, Alan Serman, Semir Vranic, Ljiljana Serman, Lucija Skara Abramovic, Zrinka Bukvic Mokos","doi":"10.1080/1061186X.2025.2496470","DOIUrl":"https://doi.org/10.1080/1061186X.2025.2496470","url":null,"abstract":"<p><p>Basal cell carcinoma (BCC) is the most common type of skin cancer that usually appears in sun-exposed body regions such as the head, trunk, and extremities. There are four main clinicopathological subtypes of BCC: nodular, superficial, morpheaform, and fibroepithelial. BCC's molecular basis includes inherited genetic susceptibility and somatic mutations, often induced by exposure to UV radiation. The aberrant activation of the hedgehog (Hh) signalling pathway, caused by mutations in the Hh components, plays a central role in the molecular pathogenesis of this carcinoma. This led to the development of Hh signalling pathway inhibitors as a new treatment option for patients with advanced disease. In this review, we summarise BCC's clinical presentation and histopathology and present knowledge on the most studied Hh signalling inhibitors, vismodegib and sonidegib, and other inhibitors of this signalling, such as itraconazole, patidegib, taladegib, and arsenic trioxide, in the treatment of BCC. We also present the most common Hh signalling inhibitor adverse events and their management options, which could improve patients' quality of life during treatment.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-21"},"PeriodicalIF":4.3,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144027640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}