Tamer Mohamed Mahmoud, Mohammed Ayad Alboreadi, Ala Hussain Haider, Amr Gamal Fouad, Amany Belal, Alaa Ismail, Mohamed A M Ali, Nisreen Khalid Aref Albezrah, Fatma I Abo El-Ela
{"title":"Efficacy and safety of valsartan-novasomes in the mitigation of atherosclerosis-associated diabetes mellitus: <i>in vitro</i> and <i>in vivo</i> assessment.","authors":"Tamer Mohamed Mahmoud, Mohammed Ayad Alboreadi, Ala Hussain Haider, Amr Gamal Fouad, Amany Belal, Alaa Ismail, Mohamed A M Ali, Nisreen Khalid Aref Albezrah, Fatma I Abo El-Ela","doi":"10.1080/1061186X.2025.2540849","DOIUrl":null,"url":null,"abstract":"<p><p>Valsartan (VAL) offers protection against atherosclerosis-associated diabetes mellitus (AADM) due to its antioxidant properties. However, VAL is hindered by poor bioavailability and effectiveness, which can be attributed to its low water solubility and significant first-pass metabolism. This research aimed to develop a nasal VAL-novasomes formulation (VNF) intended to enhance VAL's efficacy, sustainability, bioavailability and targeting for AADM treatment. The Box-Behnken design was utilised for the development and optimisation of VNF formulations. The optimum VNF was subsequently evaluated <i>in vivo</i> using an experimental rat model of AADM. Compared to free VAL, the optimum VNF improved sustainability and bioavailability by 66.02% and 3.32-fold, respectively. The VNF group demonstrated significant reductions of 70.58%, 74.15%, 77.74% and 83.87% in glucose, triglycerides, cholesterol and LDL levels, respectively, compared to the AADM group. In contrast, HDL levels increased notably by 1.67-fold. Additionally, the VNF group accumulated 4.30 times more VAL in the heart than the free VAL group. Histopathological analysis confirmed the anti-atherosclerotic effect of the optimum VNF formulation. Importantly, the VNF group did not show any toxicity when compared to the negative control group. These findings support our hypothesis that the optimum VNF, administered nasally, could serve as a potential therapy for AADM.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-18"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2540849","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Valsartan (VAL) offers protection against atherosclerosis-associated diabetes mellitus (AADM) due to its antioxidant properties. However, VAL is hindered by poor bioavailability and effectiveness, which can be attributed to its low water solubility and significant first-pass metabolism. This research aimed to develop a nasal VAL-novasomes formulation (VNF) intended to enhance VAL's efficacy, sustainability, bioavailability and targeting for AADM treatment. The Box-Behnken design was utilised for the development and optimisation of VNF formulations. The optimum VNF was subsequently evaluated in vivo using an experimental rat model of AADM. Compared to free VAL, the optimum VNF improved sustainability and bioavailability by 66.02% and 3.32-fold, respectively. The VNF group demonstrated significant reductions of 70.58%, 74.15%, 77.74% and 83.87% in glucose, triglycerides, cholesterol and LDL levels, respectively, compared to the AADM group. In contrast, HDL levels increased notably by 1.67-fold. Additionally, the VNF group accumulated 4.30 times more VAL in the heart than the free VAL group. Histopathological analysis confirmed the anti-atherosclerotic effect of the optimum VNF formulation. Importantly, the VNF group did not show any toxicity when compared to the negative control group. These findings support our hypothesis that the optimum VNF, administered nasally, could serve as a potential therapy for AADM.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.