双敏感纳米粒子介导的协同治疗策略,包括光动力治疗,化疗和ICD刺激治疗乳腺癌。

IF 3.9 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Yuan Li, Haolong Qi, Yingjie Geng, Jianguo Gao, Xiaoqing Cai
{"title":"双敏感纳米粒子介导的协同治疗策略,包括光动力治疗,化疗和ICD刺激治疗乳腺癌。","authors":"Yuan Li, Haolong Qi, Yingjie Geng, Jianguo Gao, Xiaoqing Cai","doi":"10.1080/1061186X.2025.2544806","DOIUrl":null,"url":null,"abstract":"<p><p>The combination therapy strategy exerts a significant anti-tumour effect by synergistically eliminating tumour cells through the use of two or more treatments. Nanomedicine delivery systems are widely employed in cancer therapy owing to their ability to effectively improve drug solubility and enhance drug targeting. To this end, we have designed and developed a nano-targeted drug delivery platform PAE-PEG-ss-Ce6/DOX nanoparticles (PPCD NPs), for the co-delivery of the photosensitiser chlorin e6 (Ce6) and the chemotherapeutic agent doxorubicin (DOX). The nanoparticles exhibit a mean particle size of 128.74 ± 0.80 nm, demonstrating excellent serum stability and pH/glutathione (GSH)-responsive release characteristics <i>in vitro</i>. Compared to monotherapy, PPCD NPs exhibited enhanced cytotoxicity and cellular uptake, effectively inhibiting cell proliferation by inducing reactive oxygen species (ROS) production. The results of the immunogenic cell death (ICD) experiments demonstrated that PPCD NPs induced a robust ICD effect through the synergistic action of DOX and Ce6, thereby activating anti-tumour immunity and achieving combination therapy. <i>In vivo</i> experiments and histopathological analysis demonstrated that PPCD NPs exhibit excellent tumour targeting, high anti-tumour efficacy and low biotoxicity. These findings demonstrated the superiority of the phototherapy-chemotherapy-immunotherapy synergistic treatment strategy and indicate that PPCD NPs hold promise as a safe and effective anti-tumour nanoscale targeted drug delivery system.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-13"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual-sensitive nanoparticle-mediated synergistic therapy strategy involving photodynamic therapy, chemotherapy and ICD stimuli to treat breast cancer.\",\"authors\":\"Yuan Li, Haolong Qi, Yingjie Geng, Jianguo Gao, Xiaoqing Cai\",\"doi\":\"10.1080/1061186X.2025.2544806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combination therapy strategy exerts a significant anti-tumour effect by synergistically eliminating tumour cells through the use of two or more treatments. Nanomedicine delivery systems are widely employed in cancer therapy owing to their ability to effectively improve drug solubility and enhance drug targeting. To this end, we have designed and developed a nano-targeted drug delivery platform PAE-PEG-ss-Ce6/DOX nanoparticles (PPCD NPs), for the co-delivery of the photosensitiser chlorin e6 (Ce6) and the chemotherapeutic agent doxorubicin (DOX). The nanoparticles exhibit a mean particle size of 128.74 ± 0.80 nm, demonstrating excellent serum stability and pH/glutathione (GSH)-responsive release characteristics <i>in vitro</i>. Compared to monotherapy, PPCD NPs exhibited enhanced cytotoxicity and cellular uptake, effectively inhibiting cell proliferation by inducing reactive oxygen species (ROS) production. The results of the immunogenic cell death (ICD) experiments demonstrated that PPCD NPs induced a robust ICD effect through the synergistic action of DOX and Ce6, thereby activating anti-tumour immunity and achieving combination therapy. <i>In vivo</i> experiments and histopathological analysis demonstrated that PPCD NPs exhibit excellent tumour targeting, high anti-tumour efficacy and low biotoxicity. These findings demonstrated the superiority of the phototherapy-chemotherapy-immunotherapy synergistic treatment strategy and indicate that PPCD NPs hold promise as a safe and effective anti-tumour nanoscale targeted drug delivery system.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2025.2544806\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2544806","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

联合治疗策略通过使用两种或多种治疗方法协同消除肿瘤细胞,发挥显著的抗肿瘤作用。纳米药物递送系统由于能够有效地提高药物溶解度和增强药物靶向性而广泛应用于癌症治疗。为此,我们设计并开发了一种纳米靶向药物递送平台PAE-PEG-ss-Ce6/DOX纳米颗粒(PPCD NPs),用于共同递送光敏剂氯e6 (Ce6)和化疗药物阿霉素(DOX)。纳米颗粒的平均粒径为128.74±0.80 nm,具有良好的血清稳定性和pH/谷胱甘肽(GSH)的体外释放特性。与单药治疗相比,PPCD NPs表现出增强的细胞毒性和细胞摄取,通过诱导活性氧(ROS)的产生有效地抑制细胞增殖。免疫原性细胞死亡(ICD)实验结果表明,PPCD NPs通过DOX和Ce6的协同作用诱导了强大的ICD效应,从而激活抗肿瘤免疫,实现联合治疗。体内实验和组织病理学分析表明,PPCD NPs具有良好的肿瘤靶向性、高抗肿瘤功效和低生物毒性。这些发现证明了光疗-化疗-免疫治疗协同治疗策略的优越性,并表明PPCD NPs有望成为一种安全有效的抗肿瘤纳米级靶向药物递送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dual-sensitive nanoparticle-mediated synergistic therapy strategy involving photodynamic therapy, chemotherapy and ICD stimuli to treat breast cancer.

The combination therapy strategy exerts a significant anti-tumour effect by synergistically eliminating tumour cells through the use of two or more treatments. Nanomedicine delivery systems are widely employed in cancer therapy owing to their ability to effectively improve drug solubility and enhance drug targeting. To this end, we have designed and developed a nano-targeted drug delivery platform PAE-PEG-ss-Ce6/DOX nanoparticles (PPCD NPs), for the co-delivery of the photosensitiser chlorin e6 (Ce6) and the chemotherapeutic agent doxorubicin (DOX). The nanoparticles exhibit a mean particle size of 128.74 ± 0.80 nm, demonstrating excellent serum stability and pH/glutathione (GSH)-responsive release characteristics in vitro. Compared to monotherapy, PPCD NPs exhibited enhanced cytotoxicity and cellular uptake, effectively inhibiting cell proliferation by inducing reactive oxygen species (ROS) production. The results of the immunogenic cell death (ICD) experiments demonstrated that PPCD NPs induced a robust ICD effect through the synergistic action of DOX and Ce6, thereby activating anti-tumour immunity and achieving combination therapy. In vivo experiments and histopathological analysis demonstrated that PPCD NPs exhibit excellent tumour targeting, high anti-tumour efficacy and low biotoxicity. These findings demonstrated the superiority of the phototherapy-chemotherapy-immunotherapy synergistic treatment strategy and indicate that PPCD NPs hold promise as a safe and effective anti-tumour nanoscale targeted drug delivery system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信