{"title":"微针给药系统在自身免疫性疾病治疗中的研究进展。","authors":"Tiantian Wu, Xiaowei Li, Wei Wei, Yujing Wu","doi":"10.1080/1061186X.2025.2546477","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune diseases represent a heterogeneous group of disorders characterised by immune system dysregulation, wherein aberrant responses to self-antigens result in cellular and tissue damage. According to statistics, there are over 80 different types of autoimmune diseases worldwide, among which psoriasis and rheumatoid arthritis (RA) are relatively common. Current therapeutic strategies emphasise long-term management to mitigate symptoms and retard disease progression. Conventional approaches, including systemic administration of oral medications, injectables, and biologics, are frequently limited by adverse effects that compromise patient adherence. In contrast, the use of microneedle (MN) technology as a minimally invasive transdermal delivery platform has emerged as a promising alternative, offering distinct advantages such as painless self-administration, enhanced patient compliance, localised delivery to disease-specific sites (e.g. skin lesions in psoriasis, inflamed joints in RA), and improved bioavailability of immunomodulatory agents while minimising systemic toxicity. This review systematically examines MN classification, immunomodulatory mechanisms, and therapeutic efficacy in autoimmune disease management, while also providing a critical assessment of MN biosafety and clinical translation challenges in autoimmune patients. Furthermore, it highlights recent advancements in MN technology for prevalent autoimmune disorders, with the goal of informing future innovation and accelerating clinical translation.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-17"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress of microneedle drug delivery system in the treatment of autoimmune diseases.\",\"authors\":\"Tiantian Wu, Xiaowei Li, Wei Wei, Yujing Wu\",\"doi\":\"10.1080/1061186X.2025.2546477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autoimmune diseases represent a heterogeneous group of disorders characterised by immune system dysregulation, wherein aberrant responses to self-antigens result in cellular and tissue damage. According to statistics, there are over 80 different types of autoimmune diseases worldwide, among which psoriasis and rheumatoid arthritis (RA) are relatively common. Current therapeutic strategies emphasise long-term management to mitigate symptoms and retard disease progression. Conventional approaches, including systemic administration of oral medications, injectables, and biologics, are frequently limited by adverse effects that compromise patient adherence. In contrast, the use of microneedle (MN) technology as a minimally invasive transdermal delivery platform has emerged as a promising alternative, offering distinct advantages such as painless self-administration, enhanced patient compliance, localised delivery to disease-specific sites (e.g. skin lesions in psoriasis, inflamed joints in RA), and improved bioavailability of immunomodulatory agents while minimising systemic toxicity. This review systematically examines MN classification, immunomodulatory mechanisms, and therapeutic efficacy in autoimmune disease management, while also providing a critical assessment of MN biosafety and clinical translation challenges in autoimmune patients. Furthermore, it highlights recent advancements in MN technology for prevalent autoimmune disorders, with the goal of informing future innovation and accelerating clinical translation.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2025.2546477\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2546477","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Research progress of microneedle drug delivery system in the treatment of autoimmune diseases.
Autoimmune diseases represent a heterogeneous group of disorders characterised by immune system dysregulation, wherein aberrant responses to self-antigens result in cellular and tissue damage. According to statistics, there are over 80 different types of autoimmune diseases worldwide, among which psoriasis and rheumatoid arthritis (RA) are relatively common. Current therapeutic strategies emphasise long-term management to mitigate symptoms and retard disease progression. Conventional approaches, including systemic administration of oral medications, injectables, and biologics, are frequently limited by adverse effects that compromise patient adherence. In contrast, the use of microneedle (MN) technology as a minimally invasive transdermal delivery platform has emerged as a promising alternative, offering distinct advantages such as painless self-administration, enhanced patient compliance, localised delivery to disease-specific sites (e.g. skin lesions in psoriasis, inflamed joints in RA), and improved bioavailability of immunomodulatory agents while minimising systemic toxicity. This review systematically examines MN classification, immunomodulatory mechanisms, and therapeutic efficacy in autoimmune disease management, while also providing a critical assessment of MN biosafety and clinical translation challenges in autoimmune patients. Furthermore, it highlights recent advancements in MN technology for prevalent autoimmune disorders, with the goal of informing future innovation and accelerating clinical translation.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.