Elena Ceccacci, Emanuela Villa, Fabio Santoro, Saverio Minucci, Christiana Ruhrberg, Alessandro Fantin
{"title":"A Refined Single Cell Landscape of Haematopoiesis in the Mouse Foetal Liver.","authors":"Elena Ceccacci, Emanuela Villa, Fabio Santoro, Saverio Minucci, Christiana Ruhrberg, Alessandro Fantin","doi":"10.3390/jdb11020015","DOIUrl":"10.3390/jdb11020015","url":null,"abstract":"<p><p>During prenatal life, the foetal liver is colonised by several waves of haematopoietic progenitors to act as the main haematopoietic organ. Single cell (sc) RNA-seq has been used to identify foetal liver cell types via their transcriptomic signature and to compare gene expression patterns as haematopoietic development proceeds. To obtain a refined single cell landscape of haematopoiesis in the foetal liver, we have generated a scRNA-seq dataset from a whole mouse E12.5 liver that includes a larger number of cells than prior datasets at this stage and was obtained without cell type preselection to include all liver cell populations. We combined mining of this dataset with that of previously published datasets at other developmental stages to follow transcriptional dynamics as well as the cell cycle state of developing haematopoietic lineages. Our findings corroborate several prior reports on the timing of liver colonisation by haematopoietic progenitors and the emergence of differentiated lineages and provide further molecular characterisation of each cell population. Extending these findings, we demonstrate the existence of a foetal intermediate haemoglobin profile in the mouse, similar to that previously identified in humans, and a previously unidentified population of primitive erythroid cells in the foetal liver.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9382417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thanh Khoa Nguyen, Madeline Petrikas, Brooke E Chambers, Rebecca A Wingert
{"title":"Principles of Zebrafish Nephron Segment Development.","authors":"Thanh Khoa Nguyen, Madeline Petrikas, Brooke E Chambers, Rebecca A Wingert","doi":"10.3390/jdb11010014","DOIUrl":"https://doi.org/10.3390/jdb11010014","url":null,"abstract":"<p><p>Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9580879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khanh P Phan, Panayiotis Pelargos, Alla V Tsytsykova, Erdyni N Tsitsikov, Graham Wiley, Chuang Li, Melissa Bebak, Ian F Dunn
{"title":"COMMD10 Is Essential for Neural Plate Development during Embryogenesis.","authors":"Khanh P Phan, Panayiotis Pelargos, Alla V Tsytsykova, Erdyni N Tsitsikov, Graham Wiley, Chuang Li, Melissa Bebak, Ian F Dunn","doi":"10.3390/jdb11010013","DOIUrl":"10.3390/jdb11010013","url":null,"abstract":"<p><p>The COMMD (copper metabolism MURR1 domain containing) family includes ten structurally conserved proteins (COMMD1 to COMMD10) in eukaryotic multicellular organisms that are involved in a diverse array of cellular and physiological processes, including endosomal trafficking, copper homeostasis, and cholesterol metabolism, among others. To understand the role of COMMD10 in embryonic development, we used <i>Commd10<sup>Tg(Vav1-icre)A2Kio</sup></i>/J mice, where the <i>Vav1-cre</i> transgene is integrated into an intron of the <i>Commd10</i> gene, creating a functional knockout of <i>Commd10</i> in homozygous mice. Breeding heterozygous mice produced no COMMD10-deficient <i>(Commd10<sup>Null</sup>)</i> offspring, suggesting that COMMD10 is required for embryogenesis. Analysis of <i>Commd10<sup>Null</sup></i> embryos demonstrated that they displayed stalled development by embryonic day 8.5 (E8.5). Transcriptome analysis revealed that numerous neural crest-specific gene markers had lower expression in mutant versus wild-type (WT) embryos. Specifically, <i>Commd10<sup>Null</sup></i> embryos displayed significantly lower expression levels of a number of transcription factors, including a major regulator of the neural crest, <i>Sox10</i>. Moreover, several cytokines/growth factors involved in early embryonic neurogenesis were also lower in mutant embryos. On the other hand, <i>Commd10<sup>Null</sup></i> embryos demonstrated higher expression of genes involved in tissue remodeling and regression processes. Taken together, our findings show that <i>Commd10<sup>Null</sup></i> embryos die by day E8.5 due to COMMD10-dependent neural crest failure, revealing a new and critical role for COMMD10 in neural development.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051640/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9580880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Surbek, Supawadee Sukseree, Attila Placido Sachslehner, Dragan Copic, Bahar Golabi, Ionela Mariana Nagelreiter, Erwin Tschachler, Leopold Eckhart
{"title":"Heme Oxygenase-1 Is Upregulated during Differentiation of Keratinocytes but Its Expression Is Dispensable for Cornification of Murine Epidermis.","authors":"Marta Surbek, Supawadee Sukseree, Attila Placido Sachslehner, Dragan Copic, Bahar Golabi, Ionela Mariana Nagelreiter, Erwin Tschachler, Leopold Eckhart","doi":"10.3390/jdb11010012","DOIUrl":"10.3390/jdb11010012","url":null,"abstract":"<p><p>The epidermal barrier of mammals is initially formed during embryonic development and continuously regenerated by the differentiation and cornification of keratinocytes in postnatal life. Cornification is associated with the breakdown of organelles and other cell components by mechanisms which are only incompletely understood. Here, we investigated whether heme oxygenase 1 (HO-1), which converts heme into biliverdin, ferrous iron and carbon monoxide, is required for normal cornification of epidermal keratinocytes. We show that HO-1 is transcriptionally upregulated during the terminal differentiation of human keratinocytes in vitro and in vivo. Immunohistochemistry demonstrated expression of HO-1 in the granular layer of the epidermis where keratinocytes undergo cornification. Next, we deleted the <i>Hmox1</i> gene, which encodes HO-1, by crossing <i>Hmox1</i>-floxed and <i>K14-Cre</i> mice. The epidermis and isolated keratinocytes of the resulting <i>Hmox1<sup>f/f</sup> K14-Cre</i> mice lacked HO-1 expression. The genetic inactivation of HO-1 did not impair the expression of keratinocyte differentiation markers, loricrin and filaggrin. Likewise, the transglutaminase activity and formation of the stratum corneum were not altered in <i>Hmox1<sup>f/f</sup> K14-Cre</i> mice, suggesting that HO-1 is dispensable for epidermal cornification. The genetically modified mice generated in this study may be useful for future investigations of the potential roles of epidermal HO-1 in iron metabolism and responses to oxidative stress.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9580878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scientific Papers by Developmental Biologists in Japan.","authors":"Hideyo Ohuchi, Tsutomu Nohno","doi":"10.3390/jdb11010011","DOIUrl":"https://doi.org/10.3390/jdb11010011","url":null,"abstract":"<p><p>We have assembled ten interesting manuscripts submitted by developmental biologists in Japan [...].</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9204491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yukihiro Suzuki, Takafumi Yamada, Masataka G Suzuki
{"title":"In Vitro Comparison of Sex-Specific Splicing Efficiencies of <i>fem</i> Pre-mRNA under Monoallelic and Heteroallelic Conditions of <i>csd</i>, a Master Sex-Determining Gene in the Honeybee.","authors":"Yukihiro Suzuki, Takafumi Yamada, Masataka G Suzuki","doi":"10.3390/jdb11010010","DOIUrl":"https://doi.org/10.3390/jdb11010010","url":null,"abstract":"<p><p>The sexual fate of honeybees is determined by the complementary sex determination (CSD) model: heterozygosity at a single locus (the CSD locus) determines femaleness, while hemizygosity or homozygosity at the CSD locus determines maleness. The <i>csd</i> gene encodes a splicing factor that regulates sex-specific splicing of the downstream target gene <i>feminizer</i> (<i>fem</i>), which is required for femaleness. The female mode of <i>fem</i> splicing occurs only when <i>csd</i> is present in the heteroallelic condition. To gain insights into how Csd proteins are only activated under the heterozygous allelic composition, we developed an in vitro assay system to evaluate the activity of Csd proteins. Consistent with the CSD model, the co-expression of two <i>csd</i> alleles, both of which lack splicing activity under the single-allele condition, restored the splicing activity that governs the female mode of <i>fem</i> splicing. RNA immunoprecipitation quantitative PCR analyses demonstrated that the CSD protein was specifically enriched in several exonic regions in the <i>fem</i> pre-mRNA, and enrichment in exons 3a and 5 was significantly greater under the heterozygous allelic composition than the single-allelic condition. However, in most cases <i>csd</i> expression under the monoallelic condition was capable of inducing the female mode of <i>fem</i> splicing contrary to the conventional CSD model. In contrast, repression of the male mode of <i>fem</i> splicing was predominant under heteroallelic conditions. These results were reproduced by real-time PCR of endogenous <i>fem</i> expression in female and male pupae. These findings strongly suggest that the heteroallelic composition of <i>csd</i> may be more important for the repression of the male splicing mode than for the induction of the female splicing mode of the <i>fem</i> gene.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9204494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bridgette E Drummond, Wesley S Ercanbrack, Rebecca A Wingert
{"title":"Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish.","authors":"Bridgette E Drummond, Wesley S Ercanbrack, Rebecca A Wingert","doi":"10.3390/jdb11010009","DOIUrl":"10.3390/jdb11010009","url":null,"abstract":"<p><p>Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9313043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parinaz Bina, Margaret A Hines, Johena Sanyal, Lisa A Taneyhill
{"title":"Neurogenin 2 and Neuronal Differentiation 1 Control Proper Development of the Chick Trigeminal Ganglion and Its Nerve Branches.","authors":"Parinaz Bina, Margaret A Hines, Johena Sanyal, Lisa A Taneyhill","doi":"10.3390/jdb11010008","DOIUrl":"https://doi.org/10.3390/jdb11010008","url":null,"abstract":"<p><p>The trigeminal ganglion contains the cell bodies of sensory neurons comprising cranial nerve V, which relays information related to pain, touch, and temperature from the face and head to the brain. Like other cranial ganglia, the trigeminal ganglion is composed of neuronal derivatives of two critical embryonic cell types, neural crest and placode cells. Neurogenesis within the cranial ganglia is promoted by Neurogenin 2 (Neurog2), which is expressed in trigeminal placode cells and their neuronal derivatives, and transcriptionally activates neuronal differentiation genes such as <i>Neuronal Differentiation 1</i> (<i>NeuroD1</i>). Little is known, however, about the role of Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. To address this, we depleted Neurog2 and NeuroD1 from trigeminal placode cells with morpholinos and demonstrated that Neurog2 and NeuroD1 influence trigeminal ganglion development. While knockdown of both Neurog2 and NeuroD1 affected innervation of the eye, Neurog2 and NeuroD1 had opposite effects on ophthalmic nerve branch organization. Taken together, our results highlight, for the first time, functional roles for Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. These studies shed new light on the molecular mechanisms underlying trigeminal ganglion formation and may also provide insight into general cranial gangliogenesis and diseases of the peripheral nervous system.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the Development of Skin in Vertebrates.","authors":"Lorenzo Alibardi","doi":"10.3390/jdb11010007","DOIUrl":"https://doi.org/10.3390/jdb11010007","url":null,"abstract":"<p><p>The integument of vertebrates is a complex and large organ positioned at the interface with the aquatic or terrestrial environment, and is derived from the embryonic ectoderm (epidermis) and mesoderm (dermis and hypodermis) [...].</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9313040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Complex Bridge between Aquatic and Terrestrial Life: Skin Changes during Development of Amphibians.","authors":"Esra Akat Çömden, Melodi Yenmiş, Berna Çakır","doi":"10.3390/jdb11010006","DOIUrl":"10.3390/jdb11010006","url":null,"abstract":"<p><p>Amphibian skin is a particularly complex organ that is primarily responsible for respiration, osmoregulation, thermoregulation, defense, water absorption, and communication. The skin, as well as many other organs in the amphibian body, has undergone the most extensive rearrangement in the adaptation from water to land. Structural and physiological features of skin in amphibians are presented within this review. We aim to procure extensive and updated information on the evolutionary history of amphibians and their transition from water to land-that is, the changes seen in their skin from the larval stages to adulthood from the points of morphology, physiology, and immunology.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9313038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}