利用信使核糖核酸进行细胞重编程和分化,促进再生医学。

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY
Masahito Inagaki
{"title":"利用信使核糖核酸进行细胞重编程和分化,促进再生医学。","authors":"Masahito Inagaki","doi":"10.3390/jdb12010001","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"12 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971469/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell Reprogramming and Differentiation Utilizing Messenger RNA for Regenerative Medicine.\",\"authors\":\"Masahito Inagaki\",\"doi\":\"10.3390/jdb12010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971469/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb12010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb12010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19 大流行引起了人们对信使核糖核酸 (mRNA) 医学应用的兴趣。预计 mRNA 将不仅应用于疫苗,还将应用于再生医学。mRNA 的纯度对其医疗应用非常重要。然而,目前的 mRNA 合成技术存在一些问题,包括 5'-uncapped mRNA 和双链 RNA 的污染。最近,我们的研究小组开发了一种完全封顶的 mRNA 合成技术,为 mRNA 研究的进展做出了贡献。Karikó 和 Weissman 报道了化学修饰核苷(如 N1-甲基假尿苷和 5-甲基胞苷)的引入,为 mRNA 在疫苗和再生医学中的实际应用开辟了道路。山中(Yamanaka)报道了利用逆转录病毒载体导入四种基因制备诱导多能干细胞(iPSCs)的方法,iPSCs 被广泛用于再生医学研究和制备疾病模型以筛选候选新药。在山中因子中,Klf4 和 c-Myc 是致癌基因,如果这些基因整合到基因组 DNA 中,就有可能发展成肿瘤。因此,利用没有基因组插入风险的 mRNA 进行再生医学研究备受关注。在这篇综述中,作者总结了 mRNA 的合成技术及其在再生医学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell Reprogramming and Differentiation Utilizing Messenger RNA for Regenerative Medicine.

The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信