Journal of Biomaterials Science, Polymer Edition最新文献

筛选
英文 中文
Bovine serum albumin-coated ZIF-8 nanoparticles to enhance antitumor and antimetastatic activity of methotrexate: in vitro and in vivo study. 牛血清白蛋白包裹的 ZIF-8 纳米粒子增强甲氨蝶呤的抗肿瘤和抗转移活性:体外和体内研究。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-07-22 DOI: 10.1080/09205063.2024.2379652
Maryam Salimi, Arghavan Adibifar, Neda Rostamkhani, Zahra Karami, Abdol-Hakim Agh-Atabay, Zahra Abdi, Kobra Rostamizadeh
{"title":"Bovine serum albumin-coated ZIF-8 nanoparticles to enhance antitumor and antimetastatic activity of methotrexate: <i>in vitro</i> and <i>in vivo</i> study.","authors":"Maryam Salimi, Arghavan Adibifar, Neda Rostamkhani, Zahra Karami, Abdol-Hakim Agh-Atabay, Zahra Abdi, Kobra Rostamizadeh","doi":"10.1080/09205063.2024.2379652","DOIUrl":"10.1080/09205063.2024.2379652","url":null,"abstract":"<p><p>In this study, a bovine serum albumin-decorated zeolitic imidazolate framework (ZIF-8@BSA) was used to enhance the anticancer and antimetastatic properties of methotrexate. SEM, DLS, FT-IR, and XRD confirmed the physicochemical suitability of the developed nanoparticles. According to the SEM analysis, the mean size of ZIF-8 nanoparticles was 68.5 ± 13.31 nm. The loading capacity and encapsulation efficiency of MTX@ZIF-8@BSA were 28.77 ± 2.54% and 96.3 ± 0.67%, respectively. According to the <i>in vitro</i> hemolysis test, MTX@ZIF-8@BSA showed excellent blood compatibility. MTX@ZIF-8@BSA exhibited pH sensitivity, releasing more MTX at pH 5.4 (1.73 times) than at pH 7.4. The IC<sub>50</sub> value of MTX@ZIF-8@BSA on 4T1 cells was 32.7 ± 7.3 µg/mL after 48 h of treatment, outperforming compared to free MTX with an IC<sub>50</sub> value of 53.3 ± 3.7 µg/mL. Treatment with MTX@ZIF-8@BSA resulted in superior tumor growth suppression in tumor-bearing mice than free MTX. Furthermore, based on histopathology tests, MTX@ZIF-8@BSA reduced the metastasis in lung and liver tissues. While there was not any noticeable toxicity in the vital organs of MTX@ZIF-8@BSA-receiving mice, free methotrexate resulted in severe toxicity in the kidneys and liver. According to the preliminary <i>in vitro</i> and <i>in vivo</i> findings, MTX@ZIF-8@BSA presents an attractive drug delivery system candidate for breast cancer due to its enhanced antitumor efficacy and lower toxicity.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2294-2314"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium alginate-based nanofibers loaded with Capparis Sepiaria plant extract for wound healing. 藻酸钠基纳米纤维载入蓝花楹植物提取物,用于伤口愈合。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-07-22 DOI: 10.1080/09205063.2024.2381375
Sindi P Ndlovu, Keolebogile S C M Motaung, Samson A Adeyemi, Philemon Ubanako, Lindokuhle Ngema, Thierry Y Fonkui, Derek T Ndinteh, Pradeep Kumar, Yahya E Choonara, Blessing A Aderibigbe
{"title":"Sodium alginate-based nanofibers loaded with <i>Capparis Sepiaria</i> plant extract for wound healing.","authors":"Sindi P Ndlovu, Keolebogile S C M Motaung, Samson A Adeyemi, Philemon Ubanako, Lindokuhle Ngema, Thierry Y Fonkui, Derek T Ndinteh, Pradeep Kumar, Yahya E Choonara, Blessing A Aderibigbe","doi":"10.1080/09205063.2024.2381375","DOIUrl":"10.1080/09205063.2024.2381375","url":null,"abstract":"<p><p>Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/<i>Capparis sepiaria</i> and SA/PVA/<i>Capparis sepiaria</i> nanofibers incorporated with <i>Capparis sepiaria</i> plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/<i>Capparis sepiaria</i> and SA/PVA/<i>Capparis sepiaria</i> nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: <i>Pseudomonas aeruginosa</i>, <i>Enterococcus faecalis</i>, <i>Mycobaterium smegmatis</i>, <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, <i>Proteus vulgaris</i>, and <i>Staphylococcus aureus</i>. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/<i>Capparis sepiaria</i> and SA/PVA/<i>Capparis sepiaria</i> nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The <i>in vitro</i> scratch wound healing assay showed that the SA/PVA/<i>Capparis sepiaria</i> nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/<i>Capparis sepiaria</i> nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with <i>Capparis sepiaria</i> extract are promising wound dressings that should be explored for burn wounds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2380-2401"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-09-04 DOI: 10.1080/09205063.2024.2397618
{"title":"Correction.","authors":"","doi":"10.1080/09205063.2024.2397618","DOIUrl":"10.1080/09205063.2024.2397618","url":null,"abstract":"","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"I"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly (hydroxyethylmethacrylate-co-methacryloyl glutamic acid) nanocarrier system for controlled release of levothyroxine. 用于控制释放左甲状腺素的聚(羟乙基甲基丙烯酸酯-甲基丙烯酰谷氨酸)纳米载体系统。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-07-15 DOI: 10.1080/09205063.2024.2378610
Fulden Ulucan-Karnak, Cansu İlke Kuru, Sinan Akgöl
{"title":"Poly (hydroxyethylmethacrylate-co-methacryloyl glutamic acid) nanocarrier system for controlled release of levothyroxine.","authors":"Fulden Ulucan-Karnak, Cansu İlke Kuru, Sinan Akgöl","doi":"10.1080/09205063.2024.2378610","DOIUrl":"10.1080/09205063.2024.2378610","url":null,"abstract":"<p><p>The deterioration in the structure of thyroid hormones causes many thyroid-related disorders, which leads to a negative effect on the quality of life, as well as the change in metabolic rate. For the treatment of thyroid disorders, daily use of levothyroxine-based medication is essential. In the study, it is aimed to develop a polymeric nanocarrier that can provide controlled drug release of levothyroxine. In this respect, the p(HEMA-MAGA) nanopolymer was synthesized and then characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Zeta size analysis. The specific surface area of the nanopolymer was calculated as 587.68 m<sup>2</sup>/g. The pH, temperature, concentration, and time parameters were determined for levothyroxine binding to p(HEMA-MAGA) and optimum binding was determined as pH 7.4, 25 °C, 25 µg/mL concentration, and 30 min adsorption time. As a result of the release performed at pH 7.4, a release profile was observed which increased for the first 3 days and continued for 14 days. According to the results of MTT cell viability analysis, it was determined that the p(HEMA-MAGA) nanopolymeric carrier system had no cytotoxic effect. This developed polymer-based nanocarrier system is suitable for long-term and controlled release of levothyroxine. This is a unique and novel study in terms of developing poly hydroxyethylmethacrylate-co-methacryloyl glutamic acid-based polymeric nanoparticles for levothyroxine release.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2275-2293"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Characterization of Silica-Coated Sodium Alginate Hydrogel Beads and the Delivery of Curcumin. 硅包覆海藻酸钠水凝胶珠的制备与特性以及姜黄素的输送
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2368957
Yu Xiao, Lu Wang, Xueze Zhang, Yi Ren, Jianhong Wang, Baolong Niu, Wenfeng Li
{"title":"Preparation and Characterization of Silica-Coated Sodium Alginate Hydrogel Beads and the Delivery of Curcumin.","authors":"Yu Xiao, Lu Wang, Xueze Zhang, Yi Ren, Jianhong Wang, Baolong Niu, Wenfeng Li","doi":"10.1080/09205063.2024.2368957","DOIUrl":"10.1080/09205063.2024.2368957","url":null,"abstract":"<p><p>In this study, to address the defects of sodium alginate (SA), such as its susceptibility to disintegration, silica was coated on the outer layer of sodium alginate hydrogel beads in order to improve its swelling and slow-release properties. Tetraethyl orthosilicate (TEOS) was used as the hydrolyzed precursor, and the solution of silica precursor was prepared by sol-gel reaction under acidic conditions. Then SA-silica hydrogel beads prepared by ionic crosslinking method were immersed into the SiO<sub>2</sub> precursor solution to prepare SA-silica hydrogel beads. The chemical structure and morphology of the hydrogel beads were characterized by XRD, FTIR, and SEM, and the results showed that the surface of SA-silica beads was successfully encapsulated with the outer layer of SiO<sub>2</sub>, and the surface was smooth and dense. The swelling experiments showed that the swelling performance effectively decreased with the increase of TEOS molar concentration, and the maximum swelling ratio of the hydrogel beads decreased from 41.07 to 14.3, and the time to reach the maximum swelling ratio was prolonged from 4 h to 8 h. The sustained-release experiments showed that the SA-silica hydrogel beads possessed a good pH sensitivity, and the time of sustained-release was significantly prolonged in vitro. Hemolysis and cytotoxicity experiments showed that the SA-silica hydrogel beads were biocompatible when the TEOS molar concentration was lower than 0.375 M. The SA-silica-2 hydrogel beads had good biocompatibility, swelling properties, and slow-release properties at the same time.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2153-2169"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An innovative rheology analysis method applies to the formulation optimization of Panax notoginseng total saponins ocular gel. 将创新的流变分析方法应用于三七总皂苷眼用凝胶的配方优化。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-27 DOI: 10.1080/09205063.2024.2406632
Hong Xu, Chen Zang, Fangbo Zhang, Jixiang Tian, Hua Li, Shihuan Tang, Guohua Wang
{"title":"An innovative rheology analysis method applies to the formulation optimization of Panax notoginseng total saponins ocular gel.","authors":"Hong Xu, Chen Zang, Fangbo Zhang, Jixiang Tian, Hua Li, Shihuan Tang, Guohua Wang","doi":"10.1080/09205063.2024.2406632","DOIUrl":"https://doi.org/10.1080/09205063.2024.2406632","url":null,"abstract":"<p><p>Emphasizing the viscoelasticity of ophthalmic gels is crucial for understanding the residence time, structure, and stability of hydrogels. This study primarily aimed to propose an innovative rheology analysis method for ophthalmic gels, considering complex eye movements. This method was applied to select ophthalmic gels with favorable rheological characteristics. Additionally, the physical characteristics and <i>in vitro</i> release of the selected <i>Panax notoginseng</i> total saponins (PNS) gel were demonstrated. The selected PNS gel significantly increased the activities of SOD and decreased intracellular levels of MDA, TNF-α, and IL-1β in H<sub>2</sub>O<sub>2</sub>-treated ARPE-19 cells. Finally, the optimal formulation was selected as a suitable platform for ophthalmic delivery and was shown to significantly rescue ARPE-19 cells from oxidative cellular damage.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-19"},"PeriodicalIF":3.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROS-Responsive Nanoparticles with Antioxidative Effect for the treatment of Diabetic Retinopathy. 用于治疗糖尿病视网膜病变的具有抗氧化作用的 ROS 反应性纳米粒子。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-24 DOI: 10.1080/09205063.2024.2406628
Jinjin Li, Yujia Liu, Kedui Geng, Xin Lu, Xiangchun Shen, Qianqian Guo
{"title":"ROS-Responsive Nanoparticles with Antioxidative Effect for the treatment of Diabetic Retinopathy.","authors":"Jinjin Li, Yujia Liu, Kedui Geng, Xin Lu, Xiangchun Shen, Qianqian Guo","doi":"10.1080/09205063.2024.2406628","DOIUrl":"https://doi.org/10.1080/09205063.2024.2406628","url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a common microvascular complication of diabetes necessitating early intervention to impede progression, despite current clinical treatments focusing on advanced stages. Essential oils from Fructus Alpiniae zerumbet (EOFAZ) have demonstrated efficacy in protecting against high glucose (HG)-induced Müller cell activation and DR development. This study introduced a reactive oxidative species (ROS)-responsive drug delivery system (NPS<sub>PHE</sub>@EOFAZ) targeting early DR stages and oxidative stress. Our engineered nanoparticles effectively deliver EOFAZ into HG-exposed Müller cells by detecting and responding to elevated oxidative stress levels. The NPS<sub>PHE</sub>@EOFAZ significantly inhibited abnormal cell growth, reduced oxidative stress, and alleviated inflammation <i>in vitro. In vivo</i> experiments on diabetic mice with DR revealed that NPS<sub>PHE</sub>@EOFAZ mitigated early pathological changes by reducing oxidative stress and inflammation while also alleviating organ damage in the heart, liver, spleen, lung, and kidney. These findings underscore the potential of NPS<sub>PHE</sub>@EOFAZ as a promising antioxidant for early intervention in DR pathogenesis.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrophil membrane-coated multifunctional biomimetic nanoparticles for spinal cord injuries. 用于脊髓损伤的中性粒细胞膜包被多功能仿生纳米粒子。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-19 DOI: 10.1080/09205063.2024.2404760
Hongyi Zhu, Feng Cai, Ziang Li, Lichen Zhang, Xindie Zhou, Jiapei Yao, Wei Wang, Liang Zhou, Xinzhao Jiang, Kun Xi, Yong Gu, Liang Chen, Yidi Zhou
{"title":"Neutrophil membrane-coated multifunctional biomimetic nanoparticles for spinal cord injuries.","authors":"Hongyi Zhu, Feng Cai, Ziang Li, Lichen Zhang, Xindie Zhou, Jiapei Yao, Wei Wang, Liang Zhou, Xinzhao Jiang, Kun Xi, Yong Gu, Liang Chen, Yidi Zhou","doi":"10.1080/09205063.2024.2404760","DOIUrl":"https://doi.org/10.1080/09205063.2024.2404760","url":null,"abstract":"<p><p>Spinal cord injury (SCI) is one of the most complex diseases. After SCI, severe secondary injuries can cause intense inflammatory storms and oxidative stress responses, leading to extensive neuronal apoptosis. Effective regulation of inflammation and oxidative stress after SCI remains an unresolved challenge. In this study, resveratrol-loaded nanoparticles coated with neutrophil membranes (NMR) were prepared using the emulsion-solvent evaporation method and membrane encapsulation technology. Multifunctional biomimetic nanoparticles retain neutrophil membrane-related receptors and possess a strong adsorption capacity for inflammatory factors. As a drug carrier, NMR can sustainably release resveratrol for >72 h. Moreover, co-culture studies <i>in vitro</i> show that the NMR help regulate macrophage polarization to relieve inflammatory response, reduce intracellular reactive oxygen species by approximately 50%, and improve mitochondrial membrane potential to alleviate oxidative stress. After injecting NMR into the injury site, it reduces early apoptosis, inhibit scar formation, and promote neural network recovery to improve motor function. This study demonstrates the anti-inflammatory, antioxidant, and neuroprotective effects of NMR, thus providing a novel therapeutic strategy for SCI.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-25"},"PeriodicalIF":3.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-layer nanofibrous PCL/gelatin membrane as a sealant barrier to prevent postoperative pancreatic leakage. 双层纳米纤维 PCL/明胶膜作为密封屏障,防止术后胰腺渗漏。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-18 DOI: 10.1080/09205063.2024.2402135
Prayas Chakma Shanto,Heyjin Tae,Md Yousuf Ali,Nusrat Jahan,Hae Il Jung,Byong-Taek Lee
{"title":"Dual-layer nanofibrous PCL/gelatin membrane as a sealant barrier to prevent postoperative pancreatic leakage.","authors":"Prayas Chakma Shanto,Heyjin Tae,Md Yousuf Ali,Nusrat Jahan,Hae Il Jung,Byong-Taek Lee","doi":"10.1080/09205063.2024.2402135","DOIUrl":"https://doi.org/10.1080/09205063.2024.2402135","url":null,"abstract":"Post-operative pancreatic leakage is a severe surgical complication that can cause internal bleeding, infections, multiple organ damage, and even death. To prevent pancreatic leakage and enhance the protection of the suture lining and tissue regeneration, a dual-layer nanofibrous membrane composed of synthetic polymer polycaprolactone (PCL) and biopolymer gelatin was developed. The fabrication of this dual-layer (PGI-PGO) membrane was achieved through the electrospinning technique, with the inner layer (PGI) containing 2% PCL (w/v) and 10% gelatin (w/v), and the outer layer (PGO) containing 10% PCL (w/v) and 10% gelatin (w/v) in mixing ratios of 2:1 and 1:1, respectively. Experimental results indicated that a higher gelatin content reduced fiber diameter enhanced the hydrophilicity of the PGI layer compared to the PGO layer, improved the membrane's biodegradability, and increased its adhesive properties. In vitro biocompatibility assessments with L929 fibroblast cells showed enhanced cell proliferation in the PGI-PGO membrane. In vivo studies confirmed that the PGI-PGO membrane effectively protected the suture line without any instances of leakage and promoted wound healing within four weeks post-surgery. In conclusion, the nanofibrous PGI-PGO membrane demonstrates a promising therapeutic potential to prevent postoperative pancreatic leakage.","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"18 1","pages":"1-18"},"PeriodicalIF":3.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The emerging role of nanoscaffolds in chronic diabetic wound healing: a new horizon for advanced therapeutics 纳米支架在慢性糖尿病伤口愈合中的新兴作用:先进疗法的新视野
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-18 DOI: 10.1080/09205063.2024.2402148
Mehmet Ali Tibatan, Dzana Katana, Casey M. Yin
{"title":"The emerging role of nanoscaffolds in chronic diabetic wound healing: a new horizon for advanced therapeutics","authors":"Mehmet Ali Tibatan, Dzana Katana, Casey M. Yin","doi":"10.1080/09205063.2024.2402148","DOIUrl":"https://doi.org/10.1080/09205063.2024.2402148","url":null,"abstract":"Non-healing or chronic wounds in extremities that lead to amputations in patients with Type II diabetes (hyperglycemia) are among the most serious and common health problems in the modern world. Ov...","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"262 1","pages":"1-32"},"PeriodicalIF":3.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信