Journal of Biomaterials Science, Polymer Edition最新文献

筛选
英文 中文
Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release. 用于持续释放阿昔洛韦治疗生殖器疱疹的热塑性聚氨酯设备的添加剂制造。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2396221
Victor de Carvalho Rodrigues, Iara Zanella Guterres, Beatriz Pereira Savi, Gislaine Fongaro, Izabella Thaís Silva, Gean Vitor Salmoria
{"title":"Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release.","authors":"Victor de Carvalho Rodrigues, Iara Zanella Guterres, Beatriz Pereira Savi, Gislaine Fongaro, Izabella Thaís Silva, Gean Vitor Salmoria","doi":"10.1080/09205063.2024.2396221","DOIUrl":"https://doi.org/10.1080/09205063.2024.2396221","url":null,"abstract":"<p><p>The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. 石墨烯功能化聚合物表面在牙科应用中的潜力:系统回顾
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2396224
Rohit Kumar Singh, Khyati Verma, G C Mohan Kumar, Mallikarjun B Jalageri
{"title":"Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review.","authors":"Rohit Kumar Singh, Khyati Verma, G C Mohan Kumar, Mallikarjun B Jalageri","doi":"10.1080/09205063.2024.2396224","DOIUrl":"https://doi.org/10.1080/09205063.2024.2396224","url":null,"abstract":"<p><p>Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of 3D cell culture systems with decellularized lung-derived extracellular matrix hydrogel scaffold. 利用脱细胞肺源细胞外基质水凝胶支架建立三维细胞培养系统。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2392356
Secil Subasi Can, Sema Tuncer, Hayriye Akel Bilgic, Gizem İmrak, Gülçin Günal, Ebru Damadoglu, Halil Murat Aydin, Cagatay Karaaslan
{"title":"Establishment of 3D cell culture systems with decellularized lung-derived extracellular matrix hydrogel scaffold.","authors":"Secil Subasi Can, Sema Tuncer, Hayriye Akel Bilgic, Gizem İmrak, Gülçin Günal, Ebru Damadoglu, Halil Murat Aydin, Cagatay Karaaslan","doi":"10.1080/09205063.2024.2392356","DOIUrl":"10.1080/09205063.2024.2392356","url":null,"abstract":"<p><p>Decellularized tissue hydrogels, especially that mimic the native tissue, have a high potential for tissue engineering, three-dimensional (3D) cell culture, bioprinting, and therapeutic agent encapsulation due to their excellent biocompatibility and ability to facilitate the growth of cells. It is important to note that the decellularization process significantly affects the structural integrity and properties of the extracellular matrix, which in turn shapes the characteristics of the resulting hydrogels at the macromolecular level. Therefore, our study aims to identify an effective chemical decellularization method for sheep lung tissue, using a mixing/agitation technique with a range of detergents, including commonly [Sodium dodecyl sulfate (SDS), Triton X-100, and 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate] (CHAPS), and rarely used (sodium cholate hydrate, NP-40, and 3-[<i>N</i>,<i>N</i>-Dimethyl(3-myristoylaminopropyl)ammonio]propanesulfonate) (ASB-14). After the effectiveness of the used detergents on decellularization was determined by histological and biochemical methods, lung derived decellularized extracellular matrix was converted into hydrogel. We investigated the interactions between lung cells and decellularized extracellular matrix using proliferation assay, scanning electron microscopy, and immunofluorescence microscopy methods on BEAS-2B cells in air-liquid interface. Notably, this study emphasizes the effectiveness of ASB-14 in the decellularization process, showcasing its crucial role in removing cellular components while preserving vital extracellular matrix biological macromolecules, including glycosaminoglycans, collagen, and elastin. The resulting hydrogels demonstrated favorable mechanical properties and are compatible with both cell-cell and cell-extracellular matrix interactions.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-23"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering. 用于骨组织工程的三维多孔聚己内酯/壳聚糖/生物活性玻璃支架。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-26 DOI: 10.1080/09205063.2024.2391218
Kiran Joy, Sathya Seeli David, Abinaya Shanmugavadivu, Selvamurugan Nagarajan, Prabaharan Mani
{"title":"Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering.","authors":"Kiran Joy, Sathya Seeli David, Abinaya Shanmugavadivu, Selvamurugan Nagarajan, Prabaharan Mani","doi":"10.1080/09205063.2024.2391218","DOIUrl":"https://doi.org/10.1080/09205063.2024.2391218","url":null,"abstract":"<p><p>Three-dimensional (3D) porous scaffolds based on polycaprolactone (PCL)/chitosan (CS)/bioactive glass (BG) nanoparticle composites were fabricated by the freeze-drying technique for bone tissue engineering. The physiochemical properties of the developed PCL/CS/BG scaffolds were studied using FTIR, XRD, EDX and SEM. Furthermore, the swelling degree, porosity, water retention ability, compression strength, <i>in vitro</i> biodegradation, bioactivity and biocompatibility of the scaffolds were examined. The PCL/CS/BG scaffolds with 4 wt. % of BG content presented adequate pore size (106 μm), porosity (156%), water swelling degree (128%), water retention ability (179%), compressive strength (3.7 MPa) and controlled degradation behavior, which could be ideal for bone tissue engineering. The PCL/CS/BG composite scaffolds showed good antimicrobial activity against both test bacteria and fungi. The MTT assay demonstrated the biocompatibility of PCL/CS/BG scaffolds against C3H10T1/2 cell line. The Alizarin red staining assay confirmed the osteogenic activity of the PCL/CS/BG scaffolds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the molar mass of chitosan and film casting solvents on the properties of chitosan films loaded with Mentha spicata essential oil for potential application as wound dressing. 壳聚糖摩尔质量和成膜溶剂对载入薄荷精油的壳聚糖薄膜性能的影响,该薄膜有望用作伤口敷料。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-21 DOI: 10.1080/09205063.2024.2390752
Fatima Zahra Gana, Yahia Harek, Nadia Aissaoui, Taib Nadjat, Sarra Abbad, Houria Rouabhi
{"title":"Effect of the molar mass of chitosan and film casting solvents on the properties of chitosan films loaded with <i>Mentha spicata</i> essential oil for potential application as wound dressing.","authors":"Fatima Zahra Gana, Yahia Harek, Nadia Aissaoui, Taib Nadjat, Sarra Abbad, Houria Rouabhi","doi":"10.1080/09205063.2024.2390752","DOIUrl":"10.1080/09205063.2024.2390752","url":null,"abstract":"<p><p>Chitosan based films endowed with antibacterial features have witnessed remarkable progress as potential wound dressings. The current study aimed at appraising the effects of the molar mass of chitosan (MM) and the film casting acids on the properties of unplasticized chitosan films and plasticized MSO-embedded chitosan films in order to provide best suited film formulation as a potential candidate for wound dressing application. The prepared films were functionally characterized in terms of their qualitative assessment, thickness, density, swelling behavior, water vapor barrier, mechanical and antibacterial properties. Overall, all chitosan films displayed thickness lower than the human dermis even though thicker and denser films were produced with lactic acid. Assessment of the swelling behavior revealed that only high molar mass (HMM) chitosan films may be regarded as absorbent dressings. Moreover, unplasticized HMM lactate (HMM-LA) films furnished lower stiffness and higher percent strain break as compared to acetate films, due to the plasticizing effect of the remaining lactic acid as alluded by the FTIR analysis. Meanwhile, they provided suitable level of moisture and indicated substantial antibacterial activity against <i>S. aureus</i> and <i>E. coli</i>, the most commonly opportunistic bacteria found in infected skin wound. Plasticized chitosan films doped with MSO were significantly thicker and more permeable to water compared to unplasticized films. Furthermore, MSO significantly potentiate the antibacterial effect of chitosan-based films. Therefore, plasticized HMM-LA/MSO chitosan film flashing good swelling behavior, adequate WVTR and WVP, suitable mechanical properties and antibacterial performances substantiated to be a promising antibacterial dressing material for moderately exuding wounds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical analysis of chitosan oligosaccharide revealed its usefulness in effective delivery of drugs. 壳聚糖寡糖的理化分析表明了它在有效给药方面的作用。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-21 DOI: 10.1080/09205063.2024.2392365
Shraddha Gupta, Dhakshinamoorthy Vasanth, Awanish Kumar
{"title":"Physicochemical analysis of chitosan oligosaccharide revealed its usefulness in effective delivery of drugs.","authors":"Shraddha Gupta, Dhakshinamoorthy Vasanth, Awanish Kumar","doi":"10.1080/09205063.2024.2392365","DOIUrl":"https://doi.org/10.1080/09205063.2024.2392365","url":null,"abstract":"<p><p>Chitosan oligosaccharides are biopolymers with a wide range of potential applications in various fields. This biopolymer is diverse and promising, and current research is investigating its capabilities for improved drug delivery. As chitosan oligosaccharide has the potential to be used as a drug delivery option, the purpose of this study was to examine its physicochemical characteristics and its potential for drug delivery. In this study, the pharmacokinetic properties of chitosan oligosaccharide were studied through Insilco investigation, which revealed that it is an extremely soluble and effective drug delivery candidate because it does not inhibit CYP isoenzymes and has a log <i>K<sub>p</sub></i> of -12.10 cm/s. It belongs to toxicity class 6 for acute oral toxicity, with an average similarity of 87.5% and a prediction accuracy of 70.97%. Additionally, XRD peak analysis revealed that the material was amorphous, as the peak appeared at 2<i>θ</i> = 24.62°, indicating the absence of well-defined crystalline areas. This characteristic makes the material more suitable for customization in many applications such as drug delivery and tissue engineering. FTIR, SEM, and TGA analysis were performed to gain a better understanding. These findings also emphasize the distinctive qualities and benefits of the oligosaccharides in this domain. Application of chitosan oligosaccharides in the development of efficient drug delivery systems. In the future, it would be more effective, targeted, and safe, with potent therapeutic efficacy for drug delivery.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-19"},"PeriodicalIF":3.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of bacterial cellulose/acrylic acid-based pH-responsive smart dressings by graft copolymerization method. 用接枝共聚法制备细菌纤维素/丙烯酸基 pH 值响应型智能敷料。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-20 DOI: 10.1080/09205063.2024.2389689
Wen Zhang, Xinyue Hu, Fei Jiang, Yirui Li, Wenhao Chen, Ting Zhou
{"title":"Preparation of bacterial cellulose/acrylic acid-based pH-responsive smart dressings by graft copolymerization method.","authors":"Wen Zhang, Xinyue Hu, Fei Jiang, Yirui Li, Wenhao Chen, Ting Zhou","doi":"10.1080/09205063.2024.2389689","DOIUrl":"https://doi.org/10.1080/09205063.2024.2389689","url":null,"abstract":"<p><p>Conventional wound dressings used in trauma treatment have a single function and insufficient adaptability to the wound environment, making it difficult to meet the complex demands of the healing process. Stimuli-responsive hydrogels can respond specifically to the particular environment of the wound area and realize on-demand responsive release by loading active substances, which can effectively promote wound healing. In this paper, BC/PAA-pH responsive hydrogels (BPPRHs) were prepared by graft copolymerization of acrylic acid (AA) to the end of the molecular chain of bacterial cellulose (BC) network structure. Antibacterial pH-responsive 'smart' dressings were prepared by loading curcumin (Cur) onto the hydrogels. Surface morphology, chemical groups, crystallinity, rheological, and mechanical properties of BPPRHs were analyzed by different characterization methods. The drug release behavior under different physiological conditions and bacteriostatic properties of BPPRH-Cur dressings were also investigated. The results of structural characterization and performance studies show that the hydrogel has a three-dimensional mesh structure and can respond to wound pH in a 'smart' drug release capacity. The drug release behavior of the BPPRH-Cur dressings under different environmental conditions conformed to the logistic and Weibull kinetic models. BPPRH-Cur displayed good antimicrobial activity against common pathogens of wound infections such as <i>E. coli, S. aureus,</i> and <i>P. aeruginosa</i> by destroying the cell membrane and lysing the bacterial cells. This study lays the foundation for the development of new pharmaceutical dressings with positive health, economic and social benefits.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-23"},"PeriodicalIF":3.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery. 利用统计实验设计设计和优化含乙酰唑胺纳米颗粒的隐形眼镜,实现眼部药物的可控输送。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-19 DOI: 10.1080/09205063.2024.2391233
Disha Chawnani, Ketan Ranch, Chirag Patel, Harshilkumar Jani, Shery Jacob, Moawia M Al-Tabakha, Sai H S Boddu
{"title":"Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery.","authors":"Disha Chawnani, Ketan Ranch, Chirag Patel, Harshilkumar Jani, Shery Jacob, Moawia M Al-Tabakha, Sai H S Boddu","doi":"10.1080/09205063.2024.2391233","DOIUrl":"https://doi.org/10.1080/09205063.2024.2391233","url":null,"abstract":"<p><p>This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent <i>in vitro</i> drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-25"},"PeriodicalIF":3.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin. 通过硫酸软骨素和左氧氟沙星的生物仿生多巴胺修饰增强双功能聚醚醚酮植入物的成骨和抗菌活性。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-18 DOI: 10.1080/09205063.2024.2390745
Mengjue Li, Junyan Liu, Yutong Li, Wenyu Chen, Zhou Yang, Yayu Zou, Yi Liu, Yue Lu, Jianfei Cao
{"title":"Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin.","authors":"Mengjue Li, Junyan Liu, Yutong Li, Wenyu Chen, Zhou Yang, Yayu Zou, Yi Liu, Yue Lu, Jianfei Cao","doi":"10.1080/09205063.2024.2390745","DOIUrl":"https://doi.org/10.1080/09205063.2024.2390745","url":null,"abstract":"<p><p>Polyetheretherketone (PEEK) implants have emerged as a clinically favored alternative to titanium alloy implants for cranial bone substitutes due to their excellent mechanical properties and biocompatibility. However, the biological inertness of PEEK has hindered its clinical application. To address this issue, we developed a dual-functional surface modification method aimed at enhancing both osteogenesis and antibacterial activity, which was achieved through the sustained release of chondroitin sulfate (CS) and levofloxacin (LVFX) from a biomimetic polydopamine (PDA) coating on the PEEK surface. CS was introduced to promote cell adhesion and osteogenic differentiation. Meanwhile, incorporation of antibiotic LVFX was essential to prevent infections, which are a critical concern in bone defect repairing. To our delight, experiment results demonstrated that the SPKD/CS-LVFX specimen exhibited enhanced hydrophilicity and sustained drug release profiles. Furthermore, <i>in vitro</i> experiments showed that cell growth and adhesion, cell viability, and osteogenic differentiation of mouse calvaria-derived osteoblast precursor (MC3T3-E1) cells were significantly improved on the SPKD/CS-LVFX coating. Antibacterial assays also confirmed that the SPKD/CS-LVFX specimen effectively inhibited the growth of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, attributable to the antibiotic LVFX released from the PDA coating. To sum up, this dual-functional PEEK implant showed a promising potential for clinical application in bone defects repairing, providing excellent osteogenic and antibacterial properties through a synergistic approach.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-17"},"PeriodicalIF":3.6,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and characterization of transdermal delivery of ribociclib nanoemulgel in breast cancer treatment. 在乳腺癌治疗中透皮给药 ribociclib 纳米凝胶的制备和表征。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-05-20 DOI: 10.1080/09205063.2024.2346396
Hafiz A Makeen, Mohammed Albratty
{"title":"Fabrication and characterization of transdermal delivery of ribociclib nanoemulgel in breast cancer treatment.","authors":"Hafiz A Makeen, Mohammed Albratty","doi":"10.1080/09205063.2024.2346396","DOIUrl":"10.1080/09205063.2024.2346396","url":null,"abstract":"<p><p>The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1656-1683"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信