Surface-modified gelatin hydrogel scaffolds with imprinted microgrooves: physical characterization and study on endothelial cell interaction.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Ali Salehi, Lena Rutz, Konstantin Ulbrich, Johanna Stevens, Markus Guttmann, Matthias Worgull, Giorgio Cattaneo
{"title":"Surface-modified gelatin hydrogel scaffolds with imprinted microgrooves: physical characterization and study on endothelial cell interaction.","authors":"Ali Salehi, Lena Rutz, Konstantin Ulbrich, Johanna Stevens, Markus Guttmann, Matthias Worgull, Giorgio Cattaneo","doi":"10.1080/09205063.2025.2527912","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelialization of biomaterials enhances biocompatibility, hemocompatibility, and reduces inflammatory responses in blood-contacting materials. Surface topographies, particularly groove-like structures, influence endothelial cell morphology and function. This study investigates the impact of microgroove dimensions on endothelialization in gelatin hydrogel scaffolds, alongside assessing their physical and mechanical properties. Using sequential replications, six microgroove geometries with widths ranging from 2.86 µm to 84.20 µm and depths from 284 nm to 919 nm were fabricated on gelatin hydrogel. Surface characterization of the scaffolds over 5 days using confocal microscopy revealed a shrinkage followed by dimensional stability after 24 h. Tensile testing after conditioning in cell culture environments showed Young's modulus of 327.2-529.5 kPa comparable to natural blood vessels. Cultivation of human endothelial cells demonstrated improved cell orientation and elongation on microstructured surfaces. Notably, two specific microgrooved scaffolds (9.33 µm width, 599 nm depth and 22.27 µm width, 919 nm depth) enhanced cell proliferation, adhesion and accelerated confluent monolayer formation as confirmed through fluorescent staining for cell nuclei, Vinculin, and VE-cadherin expression, respectively. This study identifies optimal microgroove dimensions for surface modification of gelatin hydrogel scaffolds demonstrating how geometric cues can positively impact cell morphology and function. This surface engineering approach has a potential application in <i>in vitro</i> endothelialized models for cardiovascular research as well as in vascular implants for tissue remodeling.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-36"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2527912","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Endothelialization of biomaterials enhances biocompatibility, hemocompatibility, and reduces inflammatory responses in blood-contacting materials. Surface topographies, particularly groove-like structures, influence endothelial cell morphology and function. This study investigates the impact of microgroove dimensions on endothelialization in gelatin hydrogel scaffolds, alongside assessing their physical and mechanical properties. Using sequential replications, six microgroove geometries with widths ranging from 2.86 µm to 84.20 µm and depths from 284 nm to 919 nm were fabricated on gelatin hydrogel. Surface characterization of the scaffolds over 5 days using confocal microscopy revealed a shrinkage followed by dimensional stability after 24 h. Tensile testing after conditioning in cell culture environments showed Young's modulus of 327.2-529.5 kPa comparable to natural blood vessels. Cultivation of human endothelial cells demonstrated improved cell orientation and elongation on microstructured surfaces. Notably, two specific microgrooved scaffolds (9.33 µm width, 599 nm depth and 22.27 µm width, 919 nm depth) enhanced cell proliferation, adhesion and accelerated confluent monolayer formation as confirmed through fluorescent staining for cell nuclei, Vinculin, and VE-cadherin expression, respectively. This study identifies optimal microgroove dimensions for surface modification of gelatin hydrogel scaffolds demonstrating how geometric cues can positively impact cell morphology and function. This surface engineering approach has a potential application in in vitro endothelialized models for cardiovascular research as well as in vascular implants for tissue remodeling.

带有印迹微沟槽的表面改性明胶水凝胶支架:物理表征及内皮细胞相互作用的研究。
生物材料的内皮化增强了生物相容性,血液相容性,并减少了血液接触材料的炎症反应。表面形貌,特别是沟槽状结构,影响内皮细胞的形态和功能。本研究调查了微槽尺寸对明胶水凝胶支架内皮化的影响,同时评估了它们的物理和机械性能。通过顺序重复,在明胶水凝胶上制备了宽度为2.86µm至84.20µm、深度为284 nm至919 nm的6个微槽几何形状。用共聚焦显微镜对支架进行了5天的表面表征,结果显示支架在24小时后尺寸稳定,随后收缩。在细胞培养环境中调节后的拉伸测试显示,杨氏模量为327.2-529.5 kPa,与天然血管相当。人内皮细胞的培养显示出细胞在微结构表面上的取向和伸长的改善。值得注意的是,两种特异性微槽支架(宽度9.33µm,深度599 nm,宽度22.27µm,深度919 nm)分别通过细胞核荧光染色、Vinculin和VE-cadherin表达证实,它们增强了细胞增殖、粘附并加速了融合单层的形成。本研究确定了明胶水凝胶支架表面修饰的最佳微槽尺寸,展示了几何线索如何对细胞形态和功能产生积极影响。这种表面工程方法在心血管研究的体外内皮化模型以及用于组织重塑的血管植入物中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信