Journal of Biomaterials Science, Polymer Edition最新文献

筛选
英文 中文
Mechanical properties and biocompatibility characterization of 3D printed collagen type II/silk fibroin/hyaluronic acid scaffold. 三维打印 II 型胶原蛋白/丝纤维素/透明质酸支架的力学性能和生物相容性表征。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-10 DOI: 10.1080/09205063.2024.2411797
Lilan Gao, Yali Li, Gang Liu, Xianglong Lin, Yansong Tan, Jie Liu, Ruixin Li, Chunqiu Zhang
{"title":"Mechanical properties and biocompatibility characterization of 3D printed collagen type II/silk fibroin/hyaluronic acid scaffold.","authors":"Lilan Gao, Yali Li, Gang Liu, Xianglong Lin, Yansong Tan, Jie Liu, Ruixin Li, Chunqiu Zhang","doi":"10.1080/09205063.2024.2411797","DOIUrl":"https://doi.org/10.1080/09205063.2024.2411797","url":null,"abstract":"<p><p>Damage to articular cartilage is irreversible and its ability to heal is minimal. The development of articular cartilage in tissue engineering requires suitable biomaterials as scaffolds that provide a 3D natural microenvironment for the development and growth of articular cartilage. This study aims to investigate the applicability of a 3D printed CSH (collagen type II/silk fibroin/hyaluronic acid) scaffold for constructing cartilage tissue engineering. The results showed that the composite scaffold had a three-dimensional porous network structure with uniform pore sizes and good connectivity. The hydrophilicity of the composite scaffold was 1071.7 ± 131.6%, the porosity was 85.12 ± 1.6%, and the compressive elastic modulus was 36.54 ± 2.28 kPa. The creep and stress relaxation constitutive models were also established, which could well describe the visco-elastic mechanical behavior of the scaffold. The biocompatibility experiments showed that the CSH scaffold was very suitable for the adhesion and proliferation of chondrocytes. Under dynamic compressive loading conditions, it was able to promote cell adhesion and proliferation on the scaffold surface. The 3D printed CSH scaffold is expected to be ideal for promoting articular cartilage regeneration.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urushiol oligomer preparation and evaluations of their antibacterial, antioxidant, and thermal stability. 尿囊素低聚物的制备及其抗菌、抗氧化和热稳定性评估。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-08 DOI: 10.1080/09205063.2024.2409483
Hongxia Chen, Hao Zhou, Zhiwen Qi, Xingying Xue, Chengzhang Wang
{"title":"Urushiol oligomer preparation and evaluations of their antibacterial, antioxidant, and thermal stability.","authors":"Hongxia Chen, Hao Zhou, Zhiwen Qi, Xingying Xue, Chengzhang Wang","doi":"10.1080/09205063.2024.2409483","DOIUrl":"https://doi.org/10.1080/09205063.2024.2409483","url":null,"abstract":"<p><p>There have been studies published on the composition and coating uses of raw lacquers following enzymatic oxidative polymerization. The change of urushiol' thermal stability and biological activity following polymerization to create oligomer, however, has received little attention. This work using silica gel column chromatography to separate urushiol and urushiol oligomer from polymerized raw lacquer and assessed its antibacterial, antioxidant, and thermal stability in an effort to decrease the allergenicity of urushiol and increase its application. By using gel chromatography, the urushiol oligomer were discovered to be polymers with 2-5 degrees of polymerization. According to characterization results from techniques like UV, FT-IR, and <sup>1</sup>H NMR, urushiol was converted into urushiol oligomer by addition reactions, and C-C coupling. The findings demonstrated that the urushiol oligomer' IC<sub>50</sub> values for scavenging DPPH and ABTS free radicals were 40.8 and 27.4 μg/mL, respectively, and that their minimum inhibitory concentrations against <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i> were 250 and 125 μg/mL. The urushiol oligomer's thermogravimetric differential curve peak temperature (461.8 °C) was higher than urushiol's (239.5 °C), indicating that urushiol undergoes polymerization with enhanced thermal stability. The study's findings establish a foundation for the use of polymerized urushiol and urushiol oligomer in applications including functional materials and additives.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of chitosan-coated noisomal doxorubicin for enhanced its medical application. 制备壳聚糖包裹的多柔比星 noisomal 及其特性,以提高其医疗应用。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-06-26 DOI: 10.1080/09205063.2024.2370591
Ebtesam A Mohamad, Alzahraa Alsayed Yousuf, Rasha H Mohamed, Haitham S Mohammed
{"title":"Preparation and characterization of chitosan-coated noisomal doxorubicin for enhanced its medical application.","authors":"Ebtesam A Mohamad, Alzahraa Alsayed Yousuf, Rasha H Mohamed, Haitham S Mohammed","doi":"10.1080/09205063.2024.2370591","DOIUrl":"10.1080/09205063.2024.2370591","url":null,"abstract":"<p><p>This study aimed to synthesize and characterize chitosan-coated noisomal doxorubicin for the purpose of enhancing its medical application, particularly in the field of cancer treatment. Doxorubicin, a potent chemotherapeutic agent, was encapsulated within noisomes, which are lipid-based nanocarriers known for their ability to efficiently deliver drugs to target sites. Chitosan, a biocompatible and biodegradable polysaccharide, was used to coat the surface of the noisomes to improve their stability and enhance drug release properties. The synthesized chitosan-coated noisomal doxorubicin was subjected to various characterization techniques to evaluate its physicochemical properties. Transmission electron microscopy (TEM) revealed a spherical structure with a diameter of 500-550 ± 5.45 nm and zeta potential of +11 ± 0.13 mV with no aggregation or agglomeration. Chitosan-coated noisomes can loaded doxorubicin with entrapping efficacy 75.19 ± 1.45%. While scanning electron microscopy (SEM) revealed well-defined pores within a fibrous surface. It is observed that chitosan-coated niosomes loading doxorubicin have optimum roughness (22.88 ± 0.71 nm). UV spectroscopy was employed to assess the drug encapsulation efficiency and release profile. Differential scanning calorimetry (DSC) helped determine the thermal behavior, which indicated a broad endotherm peak at 52.4 °C, while X-ray diffraction (XRD) analysis provided information about the crystallinity of the formulation with an intense peak at 23.79°. Fourier-transform infrared spectroscopy (FTIR) indicated the formation of new bonds between the drug and the polymer. The findings from this study will contribute to the knowledge of the physical and chemical properties of the synthesized formulation, which is crucial for ensuring its stability, drug release kinetics, and biological activity. The enhanced chitosan-coated noisomal doxorubicin has the potential to improve the effectiveness and safety of doxorubicin in cancer treatment, offering a promising strategy for enhanced medical applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual pH/redox-responsive size-switchable polymeric nano-carrier system for tumor microenvironment DTX release. 用于肿瘤微环境 DTX 释放的 pH 值/氧化还原反应尺寸可切换聚合物纳米载体系统。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-06-30 DOI: 10.1080/09205063.2024.2371203
Fahimeh Badparvar, Ahmad Poursattar Marjani, Roya Salehi, Fatemeh Ramezani, Hanieh Beyrampour Basmenj, Mehdi Talebi
{"title":"Dual pH/redox-responsive size-switchable polymeric nano-carrier system for tumor microenvironment DTX release.","authors":"Fahimeh Badparvar, Ahmad Poursattar Marjani, Roya Salehi, Fatemeh Ramezani, Hanieh Beyrampour Basmenj, Mehdi Talebi","doi":"10.1080/09205063.2024.2371203","DOIUrl":"10.1080/09205063.2024.2371203","url":null,"abstract":"<p><p>Innovation chemotherapeutic nano drug delivery systems (NDDSs) with various pharmacological achievement have become one of the hopeful therapeutic strategies in cancer therapy. This study focused on low pH, and high levels of glutathione (GSH) as two prominent characteristics of the tumor microenvironment (TME) to design a novel TME-targeted pH/redox dual-responsive P (AMA-co-DMAEMA)-b-PCL-SS-PCL-b-P (AMA-co-DMAEMA) nanoparticles (NPs) for deep tumor penetration and targeted anti-tumor therapy. The positively charged NPs exhibit strong electrostatic interactions with negatively charged cell membranes, significantly enhancing cellular uptake. Moreover, these NPs possess the unique size-shrinkable property, transitioning from 98.24 ± 27.78 to 45.56 ± 20.62 nm within the TME. This remarkable size change fosters an impressive uptake of approximately 100% by MDA-MB-231 cells within just 30 min, thereby greatly improving drug delivery efficiency. This size switchability enables passive targeting through the enhanced permeability and retention (EPR) effect, facilitating deep penetration into tumors. The NPs also demonstrate improved pH/redox-triggered drug release (∼70% at 24 h) within the TME and exhibit no toxicity in cell viability test. The cell cycle results of treated cells with docetaxel (DTX)-loaded NPs revealed G2/M (84.6 ± 1.16%) arrest. The DTX-loaded NPs showed more apoptosis (62.6 ± 3.7%) than the free DTX (51.8 ± 3.2%) in treated cells. The western blot and RT-PCR assays revealed that apoptotic genes and proteins expression of treated cells were significantly upregulated with the DTX-loaded NPs vs. the free DTX (<i>P</i><sub>value</sub><.001). In conclusion, these findings suggest that this novel-engineered NPs holds promise as a TME-targeted NDDS.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan-graphene quantum dot-based molecular imprinted polymer for oxaliplatin release. 基于壳聚糖-石墨烯量子点的奥沙利铂释放用分子印迹聚合物
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-06-17 DOI: 10.1080/09205063.2024.2366645
Fahimeh Farshi Azhar, Maryam Ahmadi, Leila Khoshmaram
{"title":"Chitosan-graphene quantum dot-based molecular imprinted polymer for oxaliplatin release.","authors":"Fahimeh Farshi Azhar, Maryam Ahmadi, Leila Khoshmaram","doi":"10.1080/09205063.2024.2366645","DOIUrl":"10.1080/09205063.2024.2366645","url":null,"abstract":"<p><p>Molecularly imprinted polymers (MIPs) have garnered the interest of researchers in the drug delivery due to their advantages, such as exceptional durability, stability, and selectivity. In this study, a biocompatible MIP drug adsorption and delivery system with high loading capacity and controlled release, was prepared based on chitosan (CS) and graphene quantum dots (GQDs) as the matrix, and the anticancer drug oxaliplatin (OXAL) as the template. Additionally, samples without the drug (non-imprinted polymers, NIPs) were created for comparison. GQDs were produced using the hydrothermal method, and samples underwent characterization through FTIR, XRD, FESEM, and TGA. Various experiments were conducted to determine the optimal pH for drug adsorption, along with kinetic and isotherm studies, selectivity assessments, <i>in vitro</i> drug release and kinetic evaluations. The highest drug binding capacity was observed at pH 6.5. The results indicated the Lagergren-first-order kinetic model (with rate constant of 0.038 min<sup>-1</sup>) and the Langmuir isotherm (with maximum adsorption capacity of 17.15 mg g<sup>-1</sup>) exhibited better alignment with the experimental data. The developed MIPs displayed significant selectivity towards OXAL, by an imprinting factor of 2.88, in comparison to two similar drugs (cisplatin and carboplatin). Furthermore, the analysis of the drug release profile showed a burst release for CS-Drug (87% within 3 h) at pH 7.4, where the release from the CS-GQD-Drug did not occur at pH 7.4 and 10; instead, the release was observed at pH 1.2 in a controlled manner (100% within 28 h). Consequently, this specific OXAL adsorption and delivery system holds promise for cancer treatment.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanospheres for curcumin delivery as a precision nanomedicine in cancer therapy. 用于姜黄素递送的纳米球是癌症治疗中的一种精准纳米药物。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-07-03 DOI: 10.1080/09205063.2024.2371186
Maryam Mahjoubin-Tehran, Samaneh Rezaei, Prashant Kesharwani, Amirhossein Sahebkar
{"title":"Nanospheres for curcumin delivery as a precision nanomedicine in cancer therapy.","authors":"Maryam Mahjoubin-Tehran, Samaneh Rezaei, Prashant Kesharwani, Amirhossein Sahebkar","doi":"10.1080/09205063.2024.2371186","DOIUrl":"10.1080/09205063.2024.2371186","url":null,"abstract":"<p><p>Cancer is ranked among the top causes of mortality throughout the world. Conventional therapies are associated with toxicity and undesirable side effects, rendering them unsuitable for prolonged use. Additionally, there is a high occurrence of resistance to anticancer drugs and recurrence in certain circumstances. Hence, it is essential to discover potent anticancer drugs that exhibit specificity and minimal unwanted effects. Curcumin, a polyphenol derivative, is present in the turmeric plant (<i>Curcuma longa</i> L.) and has chemopreventive, anticancer, radio-, and chemo-sensitizing activities. Curcumin exerts its anti-tumor effects on cancer cells by modulating the disrupted cell cycle through p53-dependent, p53-independent, and cyclin-dependent mechanisms. This review provides a summary of the formulations of curcumin based on nanospheres, since there is increasing interest in its medicinal usage for treating malignancies and tumors. Nanospheres are composed of a dense polymeric matrix, and have a size ranging from 10 to 200 nm. Lactic acid polymers, glycolic acid polymers, or mixtures of them, together with poly (methyl methacrylate), are primarily used as matrices in nanospheres. Nanospheres are suitable for local, oral, and systemic delivery due to their minuscule particle size. The majority of nanospheres are created using polymers that are both biocompatible and biodegradable. Previous investigations have shown that the use of a nanosphere delivery method can enhance tumor targeting, therapeutic efficacy, and biocompatibility of different anticancer agents. Moreover, these nanospheres can be easily taken up by mammalian cells. This review discusses the many curcumin nanosphere formulations used in cancer treatment.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial assay and controlled drug release studies with novel eugenol imprinted p(HEMA)-bacterial cellulose nanocomposite, designed for biomedical applications. 针对生物医学应用设计的新型丁香酚印迹 p(HEMA)-细菌纤维素纳米复合材料的抗菌测定和药物控释研究。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-07-04 DOI: 10.1080/09205063.2024.2366646
Sinem Diken-Gür, Nermin Hande Avcioglu, Monireh Bakhshpour-Yücel, Adil Denizli
{"title":"Antimicrobial assay and controlled drug release studies with novel eugenol imprinted p(HEMA)-bacterial cellulose nanocomposite, designed for biomedical applications.","authors":"Sinem Diken-Gür, Nermin Hande Avcioglu, Monireh Bakhshpour-Yücel, Adil Denizli","doi":"10.1080/09205063.2024.2366646","DOIUrl":"10.1080/09205063.2024.2366646","url":null,"abstract":"<p><p>In this study, a novel bio-composite material that allow sustained release of plant derived antimicrobial compound was developed for the biomedical applications to prevent the infections caused by microorganisms resistant to commercial antimicrobials agents. With this aim, bacterial cellulose (BC)-p(HEMA) nanocomposite film that imprinted with eugenol (EU) <i>via</i> metal chelated monomer, MAH was prepared. Firstly, characterization studies were utilized by FTIR, SEM and BET analysis. Then antimicrobial assays, drug release studies and in vitro cytotoxicity test were performed. A significant antimicrobial effect against both Gram (+) <i>Staphylococcus aureus</i> and Gram (-) <i>Escherichia coli</i> bacteria and a yeast <i>Candida albicans</i> were observed even in low exposure time periods. When antimicrobial effect of EU compared with commercially used agents, both antifungal and antibacterial activity of EU were found to be higher. Then, sustained drug release studies showed that approximately 55% of EU was released up to 50 h. This result proved the achievement of the molecular imprinting for an immobilization of molecules that desired to release on an area in a long-time interval. Finally, the in vitro cytotoxicity experiment performed with the mouse L929 cell line determined that the synthesized EU-imprinted BC nanocomposite was biocompatible.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collagen-β-cyclodextrin hydrogels for advanced wound dressings: super-swelling, antibacterial action, inflammation modulation, and controlled drug release. 用于高级伤口敷料的胶原-β-环糊精水凝胶:超强膨胀、抗菌作用、炎症调节和药物控释。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-06-24 DOI: 10.1080/09205063.2024.2370208
Juan J Mendoza, Carolina Arenas-de Valle, Martín Caldera-Villalobos, Lucía F Cano-Salazar, Tirso E Flores-Guía, Roberto Espinosa-Neira, Jesús A Claudio-Rizo
{"title":"Collagen-β-cyclodextrin hydrogels for advanced wound dressings: super-swelling, antibacterial action, inflammation modulation, and controlled drug release.","authors":"Juan J Mendoza, Carolina Arenas-de Valle, Martín Caldera-Villalobos, Lucía F Cano-Salazar, Tirso E Flores-Guía, Roberto Espinosa-Neira, Jesús A Claudio-Rizo","doi":"10.1080/09205063.2024.2370208","DOIUrl":"10.1080/09205063.2024.2370208","url":null,"abstract":"<p><p>A key strategy in enhancing the efficacy of collagen-based hydrogels involves incorporating polysaccharides, which have shown great promise for wound healing. In this study, semi-interpenetrating polymeric network (semi-IPN) hydrogels comprised of collagen (Col) with the macrocyclic oligosaccharide β-cyclodextrin (β-CD) (20-80 wt.%) were synthesised. Fourier-transform infrared (FTIR) spectroscopy confirmed the successful fabrication of these Col/β-CD hydrogels, evidenced by the presence of characteristic absorption bands, including the urea bond band at ∼1740 cm<sup>-1</sup>, related with collagen crosslinking. Higher β-CD content was associated with increased crosslinking, higher swelling, and faster gelation. The β-CD content directly influenced the morphology and semi-crystallinity. All Col/β-CD hydrogels displayed superabsorbent properties, enhanced thermal stability, and exhibited slow degradation rates. Mechanical properties were significantly improved with contents higher than β-CD 40 wt.%. These hydrogels inhibited the growth of <i>Escherichia coli</i> bacteria and facilitated the controlled release of agents, such as malachite green, methylene blue, and ketorolac. The chemical composition of the Col/β-CD hydrogels did not induce cytotoxic effects on monocytes and fibroblast cells. Instead, they actively promoted cellular metabolic activity, encouraging cell growth and proliferation. Moreover, cell signalling modulation was observed, leading to changes in the expression of TNF-α and IL-10 cytokines. In summary, the results of this research indicate that these novel hydrogels possess multifunctional characteristics, including biocompatibility, super-swelling capacity, good thermal, hydrolytic, and enzymatic degradation resistance, antibacterial activity, inflammation modulation, and the ability to be used for controlled delivery of therapeutic agents, indicating high potential for application in advanced wound dressings.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Characterization of Silica-Coated Sodium Alginate Hydrogel Beads and the Delivery of Curcumin. 硅包覆海藻酸钠水凝胶珠的制备与特性以及姜黄素的输送
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-10-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2368957
Yu Xiao, Lu Wang, Xueze Zhang, Yi Ren, Jianhong Wang, Baolong Niu, Wenfeng Li
{"title":"Preparation and Characterization of Silica-Coated Sodium Alginate Hydrogel Beads and the Delivery of Curcumin.","authors":"Yu Xiao, Lu Wang, Xueze Zhang, Yi Ren, Jianhong Wang, Baolong Niu, Wenfeng Li","doi":"10.1080/09205063.2024.2368957","DOIUrl":"10.1080/09205063.2024.2368957","url":null,"abstract":"<p><p>In this study, to address the defects of sodium alginate (SA), such as its susceptibility to disintegration, silica was coated on the outer layer of sodium alginate hydrogel beads in order to improve its swelling and slow-release properties. Tetraethyl orthosilicate (TEOS) was used as the hydrolyzed precursor, and the solution of silica precursor was prepared by sol-gel reaction under acidic conditions. Then SA-silica hydrogel beads prepared by ionic crosslinking method were immersed into the SiO<sub>2</sub> precursor solution to prepare SA-silica hydrogel beads. The chemical structure and morphology of the hydrogel beads were characterized by XRD, FTIR, and SEM, and the results showed that the surface of SA-silica beads was successfully encapsulated with the outer layer of SiO<sub>2</sub>, and the surface was smooth and dense. The swelling experiments showed that the swelling performance effectively decreased with the increase of TEOS molar concentration, and the maximum swelling ratio of the hydrogel beads decreased from 41.07 to 14.3, and the time to reach the maximum swelling ratio was prolonged from 4 h to 8 h. The sustained-release experiments showed that the SA-silica hydrogel beads possessed a good pH sensitivity, and the time of sustained-release was significantly prolonged in vitro. Hemolysis and cytotoxicity experiments showed that the SA-silica hydrogel beads were biocompatible when the TEOS molar concentration was lower than 0.375 M. The SA-silica-2 hydrogel beads had good biocompatibility, swelling properties, and slow-release properties at the same time.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An innovative rheology analysis method applies to the formulation optimization of Panax notoginseng total saponins ocular gel. 将创新的流变分析方法应用于三七总皂苷眼用凝胶的配方优化。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-27 DOI: 10.1080/09205063.2024.2406632
Hong Xu, Chen Zang, Fangbo Zhang, Jixiang Tian, Hua Li, Shihuan Tang, Guohua Wang
{"title":"An innovative rheology analysis method applies to the formulation optimization of Panax notoginseng total saponins ocular gel.","authors":"Hong Xu, Chen Zang, Fangbo Zhang, Jixiang Tian, Hua Li, Shihuan Tang, Guohua Wang","doi":"10.1080/09205063.2024.2406632","DOIUrl":"https://doi.org/10.1080/09205063.2024.2406632","url":null,"abstract":"<p><p>Emphasizing the viscoelasticity of ophthalmic gels is crucial for understanding the residence time, structure, and stability of hydrogels. This study primarily aimed to propose an innovative rheology analysis method for ophthalmic gels, considering complex eye movements. This method was applied to select ophthalmic gels with favorable rheological characteristics. Additionally, the physical characteristics and <i>in vitro</i> release of the selected <i>Panax notoginseng</i> total saponins (PNS) gel were demonstrated. The selected PNS gel significantly increased the activities of SOD and decreased intracellular levels of MDA, TNF-α, and IL-1β in H<sub>2</sub>O<sub>2</sub>-treated ARPE-19 cells. Finally, the optimal formulation was selected as a suitable platform for ophthalmic delivery and was shown to significantly rescue ARPE-19 cells from oxidative cellular damage.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信